William A. Lewinger, Cynthia Harley, R. Ritzmann, M. Branicky, R. Quinn
{"title":"Insect-like Antennal Sensing for Climbing and Tunneling Behavior in a Biologically-inspired Mobile Robot","authors":"William A. Lewinger, Cynthia Harley, R. Ritzmann, M. Branicky, R. Quinn","doi":"10.1109/ROBOT.2005.1570761","DOIUrl":null,"url":null,"abstract":"Through the use of mechanical, actuated antennae a biologically-inspired robot is capable of autonomous decision-making and navigation when faced with an obstacle that can be climbed over or tunneled under. Vertically-sweeping mechanical antennae and interface microcontrollers have been added to the Whegs ™ II [1] sensor platform that allow it to autonomously sense the presence of, and successfully navigate a horizontal shelf placed in its path. The obstacle is sensed when the antennae make contact with it, and navigation is made possible through articulation of the Whegs ™ II body flexion joint.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"21 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50
Abstract
Through the use of mechanical, actuated antennae a biologically-inspired robot is capable of autonomous decision-making and navigation when faced with an obstacle that can be climbed over or tunneled under. Vertically-sweeping mechanical antennae and interface microcontrollers have been added to the Whegs ™ II [1] sensor platform that allow it to autonomously sense the presence of, and successfully navigate a horizontal shelf placed in its path. The obstacle is sensed when the antennae make contact with it, and navigation is made possible through articulation of the Whegs ™ II body flexion joint.