Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference

Ross Porter, Sam Morgan, M. Biglari-Abhari
{"title":"Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference","authors":"Ross Porter, Sam Morgan, M. Biglari-Abhari","doi":"10.1109/CSCI49370.2019.00130","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) are the gold-standard for computer vision. Using CNN on embedded hardware that has limited computational capability is an area of active investigation and optimization. In this paper, we investigate the potential of extending the RISC-V Instruction Set Architecture for accelerating the inference of a CNN using in-pipeline hardware blocks and custom instructions. Our preliminary designs have a small footprint and minimal impact on maximum core frequency. The new designed instructions were used to extend an existing soft-core processor. This processor was synthesized to an FPGA for cycle-accurate testing and performance evaluation.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"23 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Convolutional Neural Networks (CNNs) are the gold-standard for computer vision. Using CNN on embedded hardware that has limited computational capability is an area of active investigation and optimization. In this paper, we investigate the potential of extending the RISC-V Instruction Set Architecture for accelerating the inference of a CNN using in-pipeline hardware blocks and custom instructions. Our preliminary designs have a small footprint and minimal impact on maximum core frequency. The new designed instructions were used to extend an existing soft-core processor. This processor was synthesized to an FPGA for cycle-accurate testing and performance evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展软核RISC-V处理器以加速CNN推理
卷积神经网络(cnn)是计算机视觉的黄金标准。在计算能力有限的嵌入式硬件上使用CNN是一个积极研究和优化的领域。在本文中,我们研究了扩展RISC-V指令集架构的潜力,以使用管道内硬件块和自定义指令加速CNN的推理。我们的初步设计占地面积小,对最大核心频率的影响最小。新设计的指令用于扩展现有的软核处理器。该处理器被合成为FPGA,用于周期精确测试和性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Long Short Term Memory Networks Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference Uncovering Los Angeles Tourists' Patterns Using Geospatial Analysis and Supervised Machine Learning with Random Forest Predictors A Framework for Leveraging Business Intelligence to Manage Transactional Data Flows between Private Healthcare Providers and Medical Aid Administrators Feasibility Study of a Consumer Multi-Sensory Wristband to Monitor Sleep Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1