Regularization of orthogonal neural networks using fractional derivatives

K. Halawa
{"title":"Regularization of orthogonal neural networks using fractional derivatives","authors":"K. Halawa","doi":"10.1109/YCICT.2009.5382425","DOIUrl":null,"url":null,"abstract":"A method of regularization of orthogonal neural networks using fractional derivatives is proposed in the paper. The cost function with a penalty for non-smoothness with fractional derivatives enabling to use a priori knowledge. The formula for network weight values which minimize the proposed cost function was derived. It was demonstrated the obtained matrix in normal equations is nonnegative-definite. The results of simulation experiments where the outlined method was used for modeling static nonlinear systems were shown.","PeriodicalId":138803,"journal":{"name":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","volume":"64 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YCICT.2009.5382425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method of regularization of orthogonal neural networks using fractional derivatives is proposed in the paper. The cost function with a penalty for non-smoothness with fractional derivatives enabling to use a priori knowledge. The formula for network weight values which minimize the proposed cost function was derived. It was demonstrated the obtained matrix in normal equations is nonnegative-definite. The results of simulation experiments where the outlined method was used for modeling static nonlinear systems were shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用分数阶导数正则化正交神经网络
提出了一种利用分数阶导数对正交神经网络进行正则化的方法。代价函数具有非平滑性的惩罚,具有分数阶导数,可以使用先验知识。导出了使所提出的代价函数最小的网络权值公式。证明了所得到的一般方程的矩阵是非负定式的。最后给出了将该方法用于静态非线性系统建模的仿真实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation study of queues' length balance in CICQ switching fabrics Stereo-motion estimation for visual object tracking Regularization of orthogonal neural networks using fractional derivatives System identifiability for sparse and nonuniform samples via spectral analysis A probabilistic filter protocol for Continuous Nearest-Neighbor Query
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1