An Alternative Extension of the FCM Algorithm for Clustering Fuzzy Databases

A. Touzi
{"title":"An Alternative Extension of the FCM Algorithm for Clustering Fuzzy Databases","authors":"A. Touzi","doi":"10.1109/DBKDA.2010.35","DOIUrl":null,"url":null,"abstract":"Several real applications need to manage fuzzy information. Among the languages proposed for this type of data, the Fuzzy SQL (FSQL) language had a great success, seen its great power of modeling and it’s an extension of the well-known SQL language. In this paper, we propose an alternative for FCM algorithm For Fuzzy Database describe with FSQL. The conventional fuzzy clustering algorithms form fuzzy clusters so as to minimize the total distance from cluster centers to data points. However, they cannot be applied in the case where the data vectors are described with FSQL is given. To concretize our approach we used the BDRF described with the GEFRED model, which is supporting the FSQL language.","PeriodicalId":273177,"journal":{"name":"2010 Second International Conference on Advances in Databases, Knowledge, and Data Applications","volume":"303 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Advances in Databases, Knowledge, and Data Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBKDA.2010.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Several real applications need to manage fuzzy information. Among the languages proposed for this type of data, the Fuzzy SQL (FSQL) language had a great success, seen its great power of modeling and it’s an extension of the well-known SQL language. In this paper, we propose an alternative for FCM algorithm For Fuzzy Database describe with FSQL. The conventional fuzzy clustering algorithms form fuzzy clusters so as to minimize the total distance from cluster centers to data points. However, they cannot be applied in the case where the data vectors are described with FSQL is given. To concretize our approach we used the BDRF described with the GEFRED model, which is supporting the FSQL language.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊数据库聚类中FCM算法的另一种扩展
一些实际应用需要管理模糊信息。在针对这类数据提出的语言中,模糊SQL (FSQL)语言取得了巨大的成功,因为它具有强大的建模能力,而且它是众所周知的SQL语言的扩展。本文针对用FSQL描述的模糊数据库,提出了一种替代FCM算法的方法。传统的模糊聚类算法形成模糊聚类是为了使聚类中心到数据点的总距离最小。然而,它们不能应用于用FSQL描述数据向量的情况。为了使我们的方法具体化,我们使用了GEFRED模型描述的BDRF,它支持FSQL语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Alternative Extension of the FCM Algorithm for Clustering Fuzzy Databases Efficient Maintenance of k-Dominant Skyline for Frequently Updated Database Sudoku Bit Arrangement for Combined Demosaicking and Watermarking in Digital Camera Scalable P2P Reconciliation Infrastructure for Collaborative Text Editing SARI OpenRec -- Empowering Recommendation Systems with Business Events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1