Health and Remaining Useful Life Estimation of Electronic Circuits

M. Pecht, Myeongsu Kang
{"title":"Health and Remaining Useful Life Estimation of Electronic Circuits","authors":"M. Pecht, Myeongsu Kang","doi":"10.1002/9781119515326.CH11","DOIUrl":null,"url":null,"abstract":"This chapter develops a kernel‐based learning technique to estimate the health degradation of an electronic circuit due to parametric deviation in the circuit components. A model‐based filtering method is developed for predicting the remaining useful life (RUL) of electronic circuit‐comprising components exhibiting parametric faults. The existing approaches for predicting failures resulting from electronic component parametric faults emphasize identifying monotonically deviating parameters and modeling their progression over time. The existing literature is classified and reviewed based on the approach employed for health estimation and failure prediction ‐ either the component‐centric approach or the circuit‐centric approach. The chapter presents the developed first‐principles‐based model to capture the degradation in circuit performance. It discusses the stochastic algorithm used for joint state‐parameter estimation and RUL prediction. The chapter describes the validation results using data obtained from simulation‐based experiments on the critical circuits of a direct‐current (DC)‐DC converter system.","PeriodicalId":163377,"journal":{"name":"Prognostics and Health Management of Electronics","volume":"7 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prognostics and Health Management of Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119515326.CH11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This chapter develops a kernel‐based learning technique to estimate the health degradation of an electronic circuit due to parametric deviation in the circuit components. A model‐based filtering method is developed for predicting the remaining useful life (RUL) of electronic circuit‐comprising components exhibiting parametric faults. The existing approaches for predicting failures resulting from electronic component parametric faults emphasize identifying monotonically deviating parameters and modeling their progression over time. The existing literature is classified and reviewed based on the approach employed for health estimation and failure prediction ‐ either the component‐centric approach or the circuit‐centric approach. The chapter presents the developed first‐principles‐based model to capture the degradation in circuit performance. It discusses the stochastic algorithm used for joint state‐parameter estimation and RUL prediction. The chapter describes the validation results using data obtained from simulation‐based experiments on the critical circuits of a direct‐current (DC)‐DC converter system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子电路的健康和剩余使用寿命估计
本章开发了一种基于核的学习技术来估计由于电路元件参数偏差导致的电子电路的健康退化。开发了一种基于模型的滤波方法,用于预测电子电路的剩余使用寿命(RUL),该电路由显示参数故障的组件组成。现有的预测电子元件参数故障的方法强调识别单调偏离的参数并对其随时间的变化进行建模。现有的文献是根据健康评估和故障预测所采用的方法进行分类和回顾的——要么以组件为中心的方法,要么以电路为中心的方法。本章介绍了开发的基于第一性原理的模型,以捕获电路性能的退化。讨论了用于联合状态参数估计和RUL预测的随机算法。本章描述了使用在直流(DC) - DC转换器系统的关键电路上基于仿真的实验获得的数据的验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Health and Remaining Useful Life Estimation of Electronic Circuits Introduction to PHM PHM Software for Electronics PHM-Based Qualification of Electronics Machine Learning: Fundamentals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1