Fast algorithms for time series mining

Lei Li, C. Faloutsos
{"title":"Fast algorithms for time series mining","authors":"Lei Li, C. Faloutsos","doi":"10.1109/ICDEW.2010.5452719","DOIUrl":null,"url":null,"abstract":"In this paper, we present fast algorithms on mining coevolving time series, with or with out missing values. Our algorithms could mine meaningful patterns effectively and efficiently. With those patterns, our algorithms can do forecasting, compression, and segmentation. Furthermore, we apply our algorithm to solve practical problems including occlusions in motion capture, and generating natural human motions by stitching low-effort motions. We also propose a parallel learning algorithm for LDS to fully utilize the power of multicore/multiprocessors, which will serve as corner stone of many applications and algorithms for time series.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"9 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present fast algorithms on mining coevolving time series, with or with out missing values. Our algorithms could mine meaningful patterns effectively and efficiently. With those patterns, our algorithms can do forecasting, compression, and segmentation. Furthermore, we apply our algorithm to solve practical problems including occlusions in motion capture, and generating natural human motions by stitching low-effort motions. We also propose a parallel learning algorithm for LDS to fully utilize the power of multicore/multiprocessors, which will serve as corner stone of many applications and algorithms for time series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速时间序列挖掘算法
在本文中,我们提出了一种快速挖掘协同演化时间序列的算法,无论是否存在缺失值。我们的算法可以有效地挖掘有意义的模式。有了这些模式,我们的算法就可以进行预测、压缩和分割。此外,我们将该算法应用于解决实际问题,包括运动捕捉中的遮挡,以及通过拼接低费力的运动来生成自然的人体运动。我们还提出了一种LDS的并行学习算法,以充分利用多核/多处理器的能力,这将成为许多时间序列应用和算法的基石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast algorithms for time series mining Ontology alignment argumentation with mutual dependency between arguments and mappings A first step towards integration independence Towards enterprise software as a service in the cloud U-DBSCAN : A density-based clustering algorithm for uncertain objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1