Article Segmentation in Digitised Newspapers with a 2D Markov Model

Andrew Naoum, J. Nothman, J. Curran
{"title":"Article Segmentation in Digitised Newspapers with a 2D Markov Model","authors":"Andrew Naoum, J. Nothman, J. Curran","doi":"10.1109/ICDAR.2019.00165","DOIUrl":null,"url":null,"abstract":"Document analysis and recognition is increasingly used to digitise collections of historical books, newspapers and other periodicals. In the digital humanities, it is often the goal to apply information retrieval (IR) and natural language processing (NLP) techniques to help researchers analyse and navigate these digitised archives. The lack of article segmentation is impairing many IR and NLP systems, which assume text is split into ordered, error-free documents. We define a document analysis and image processing task for segmenting digitised newspapers into articles and other content, e.g. adverts, and we automatically create a dataset of 11602 articles. Using this dataset, we develop and evaluate an innovative 2D Markov model that encodes reading order and substantially outperforms the current state-of-the-art, reaching similar accuracy to human annotators.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"38 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Document analysis and recognition is increasingly used to digitise collections of historical books, newspapers and other periodicals. In the digital humanities, it is often the goal to apply information retrieval (IR) and natural language processing (NLP) techniques to help researchers analyse and navigate these digitised archives. The lack of article segmentation is impairing many IR and NLP systems, which assume text is split into ordered, error-free documents. We define a document analysis and image processing task for segmenting digitised newspapers into articles and other content, e.g. adverts, and we automatically create a dataset of 11602 articles. Using this dataset, we develop and evaluate an innovative 2D Markov model that encodes reading order and substantially outperforms the current state-of-the-art, reaching similar accuracy to human annotators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二维马尔可夫模型的数字化报纸文章分割
文献分析和识别越来越多地用于历史书籍、报纸和其他期刊的数字化收藏。在数字人文学科中,应用信息检索(IR)和自然语言处理(NLP)技术来帮助研究人员分析和浏览这些数字化档案往往是目标。缺乏文章分割正在损害许多IR和NLP系统,这些系统假设文本被分割成有序的,无错误的文档。我们定义了一个文档分析和图像处理任务,用于将数字化报纸分割为文章和其他内容,例如广告,我们自动创建了一个包含11602篇文章的数据集。使用此数据集,我们开发和评估了一个创新的2D马尔可夫模型,该模型对阅读顺序进行编码,并且大大优于当前最先进的技术,达到与人类注释器相似的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Article Segmentation in Digitised Newspapers with a 2D Markov Model ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard TableNet: Deep Learning Model for End-to-end Table Detection and Tabular Data Extraction from Scanned Document Images DICE: Deep Intelligent Contextual Embedding for Twitter Sentiment Analysis Blind Source Separation Based Framework for Multispectral Document Images Binarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1