Face alignment via an ensemble of random ferns

Xiang Xu, S. Shah, I. Kakadiaris
{"title":"Face alignment via an ensemble of random ferns","authors":"Xiang Xu, S. Shah, I. Kakadiaris","doi":"10.1109/ISBA.2016.7477237","DOIUrl":null,"url":null,"abstract":"This paper proposes a simple but efficient shape regression method for face alignment using an ensemble of random ferns. First, a classification method is used to obtain several mean shapes for initialization. Second, an ensemble of local random ferns is learned based on the correlation between the projected regression targets and local pixel-difference matrix for each landmark. Third, the ensemble of random ferns is used to generate local binary features. Finally, the global projection matrix is learned based on concatenated binary features using ridge regression. The results demonstrate that the proposed method is efficient and accurate when compared with the state-of-the-art face alignment methods and achieve the best performance on LFPW and Helen datasets.","PeriodicalId":198009,"journal":{"name":"2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","volume":"54 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2016.7477237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes a simple but efficient shape regression method for face alignment using an ensemble of random ferns. First, a classification method is used to obtain several mean shapes for initialization. Second, an ensemble of local random ferns is learned based on the correlation between the projected regression targets and local pixel-difference matrix for each landmark. Third, the ensemble of random ferns is used to generate local binary features. Finally, the global projection matrix is learned based on concatenated binary features using ridge regression. The results demonstrate that the proposed method is efficient and accurate when compared with the state-of-the-art face alignment methods and achieve the best performance on LFPW and Helen datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过随机蕨类植物的集合进行面部对齐
本文提出了一种简单而有效的基于随机蕨类集合的人脸对齐形状回归方法。首先,采用分类方法获得若干平均形状进行初始化;其次,基于投影回归目标与每个地标的局部像素差矩阵之间的相关性,学习局部随机蕨类植物集合;第三,利用随机蕨类集合生成局部二值特征。最后,利用脊回归学习基于拼接二值特征的全局投影矩阵。结果表明,与现有的人脸对齐方法相比,该方法具有较高的效率和准确性,在LFPW和Helen数据集上取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
"I don't like putting my face on the Internet!": An acceptance study of face biometrics as a CAPTCHA replacement Performance analysis of gait recognition with large perspective distortion Face alignment via an ensemble of random ferns Iris recognition with a database of iris images obtained in visible light using smartphone camera Rendering or normalization? An analysis of the 3D-aided pose-invariant face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1