Load-balancing methods for parallel and distributed constraint solving

Carl Christian Rolf, K. Kuchcinski
{"title":"Load-balancing methods for parallel and distributed constraint solving","authors":"Carl Christian Rolf, K. Kuchcinski","doi":"10.1109/CLUSTR.2008.4663786","DOIUrl":null,"url":null,"abstract":"Program parallelization and distribution becomes increasingly important when new multi-core architectures and cheaper cluster technology provide ways to improve performance. Using declarative languages, such as constraint programming, can make the transition to parallelism easier for the programmer. In this paper, we address parallel and distributed search in constraint programming (CP) by proposing several load-balancing methods. We show how these methods improve the execution-time scalability of constraint programs. Scalability is the greatest challenge of parallelism and it is particularly an issue in constraint programming, where load-balancing is difficult. We address this problem by proposing CP-specific load-balancing methods and evaluating them on a cluster by using benchmark problems. Our experimental results show that the methods behave differently well depending on the type of problem and the type of search. This gives the programmer the opportunity to optimize the performance for a particular problem.","PeriodicalId":198768,"journal":{"name":"2008 IEEE International Conference on Cluster Computing","volume":"18 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2008.4663786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Program parallelization and distribution becomes increasingly important when new multi-core architectures and cheaper cluster technology provide ways to improve performance. Using declarative languages, such as constraint programming, can make the transition to parallelism easier for the programmer. In this paper, we address parallel and distributed search in constraint programming (CP) by proposing several load-balancing methods. We show how these methods improve the execution-time scalability of constraint programs. Scalability is the greatest challenge of parallelism and it is particularly an issue in constraint programming, where load-balancing is difficult. We address this problem by proposing CP-specific load-balancing methods and evaluating them on a cluster by using benchmark problems. Our experimental results show that the methods behave differently well depending on the type of problem and the type of search. This gives the programmer the opportunity to optimize the performance for a particular problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行和分布式约束求解的负载平衡方法
当新的多核架构和更便宜的集群技术提供了提高性能的方法时,程序并行化和分布变得越来越重要。使用声明性语言,例如约束编程,可以使程序员更容易地过渡到并行性。本文通过提出几种负载均衡方法来解决约束规划中的并行搜索和分布式搜索问题。我们展示了这些方法如何提高约束程序的执行时可伸缩性。可伸缩性是并行性的最大挑战,在约束编程中尤其如此,因为在约束编程中很难实现负载平衡。我们通过提出特定于cp的负载平衡方法来解决这个问题,并通过使用基准问题在集群上对它们进行评估。我们的实验结果表明,根据问题类型和搜索类型的不同,这些方法表现得不同。这为程序员提供了针对特定问题优化性能的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Load-balancing methods for parallel and distributed constraint solving Exploiting data compression in collective I/O techniques High message rate, NIC-based atomics: Design and performance considerations Impact of topology and link aggregation on a PC cluster with Ethernet Active storage using object-based devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1