Learning semantics in content based image retrieval

HongJiang Zhang
{"title":"Learning semantics in content based image retrieval","authors":"HongJiang Zhang","doi":"10.1109/ISPA.2003.1296909","DOIUrl":null,"url":null,"abstract":"Content-based image retrieval (CBIR) is an attempt to remove the bottleneck of visual semantic understanding needed in automated indexing in visual information retrieval. However, the myth about the power of visual-feature-based indexing was quickly diminished as such features are far from representing semantic visual contents and producing meaningful indexes. One solution is to apply relevance feedback to refine queries or similarity measures in the search process and apply machine learning techniques to learn semantic annotations. In this paper, we address the key issues involved in relevance feedback of CBIR systems and review solutions to these issues. Based on these discussions, we present a relevance feedback and semantic learning framework for CBIR. We hope the ideas presented in this paper serve as a catalyst to more research efforts in this direction.","PeriodicalId":218932,"journal":{"name":"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2003.1296909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Content-based image retrieval (CBIR) is an attempt to remove the bottleneck of visual semantic understanding needed in automated indexing in visual information retrieval. However, the myth about the power of visual-feature-based indexing was quickly diminished as such features are far from representing semantic visual contents and producing meaningful indexes. One solution is to apply relevance feedback to refine queries or similarity measures in the search process and apply machine learning techniques to learn semantic annotations. In this paper, we address the key issues involved in relevance feedback of CBIR systems and review solutions to these issues. Based on these discussions, we present a relevance feedback and semantic learning framework for CBIR. We hope the ideas presented in this paper serve as a catalyst to more research efforts in this direction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内容的图像检索中的语义学习
基于内容的图像检索(CBIR)是一种消除视觉信息检索中自动索引所需要的视觉语义理解瓶颈的尝试。然而,关于基于视觉特征的索引能力的神话很快就消失了,因为这些特征远远不能代表语义视觉内容和产生有意义的索引。一种解决方案是在搜索过程中应用相关性反馈来改进查询或相似性度量,并应用机器学习技术来学习语义注释。在本文中,我们讨论了相关反馈系统中涉及的关键问题,并对这些问题的解决方案进行了综述。在此基础上,我们提出了一个相关反馈和语义学习框架。我们希望本文中提出的想法能够促进这一方向的更多研究工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning semantics in content based image retrieval Timing-free blind multiuser detection for multicarrier DS/CDMA systems with multiple antennas Adaptive weighted median filter using local entropy for ultrasonic image denoising A new 2D adaptive nonlinear filter based on the Lyapunov stability theory Tissue segmentation of multi-channel brain images with inhomogeneity correction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1