{"title":"Simulation Of The Structure FSS Using The WCIP Method For Dual Polarization Applications","authors":"Abdelmalik Mekaoussi, M. Titaouine","doi":"10.1109/ICRAMI52622.2021.9585971","DOIUrl":null,"url":null,"abstract":"In this work, we studied an L-shaped frequency selective surface (FSS) by a method called Wave Concept Iterative Procedure (WCIP), this method developed from the Modal Fast Transformation (FMT) is based on the cross- formulation. wave and the solution obtained by an iterative procedure does not use the matrix to ensure convergence and the procedure is stopped when it arrives at convergence, for this geometry the results of a single resonance obtained by the WCIP method have a resonant frequency of 5.35 GHz with a band bandwidth of 2.3 GHz, when the structure is excited in the X direction, a frequency at 10.35 GHz with a bandwidth of 0.44 GHz when the structure is excited in the Y direction. The simulation of the results obtained by the WCIP method is compared with the results of the software HFSS 13.0 (High Frequency Structure Simulator), we find a good agreement.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we studied an L-shaped frequency selective surface (FSS) by a method called Wave Concept Iterative Procedure (WCIP), this method developed from the Modal Fast Transformation (FMT) is based on the cross- formulation. wave and the solution obtained by an iterative procedure does not use the matrix to ensure convergence and the procedure is stopped when it arrives at convergence, for this geometry the results of a single resonance obtained by the WCIP method have a resonant frequency of 5.35 GHz with a band bandwidth of 2.3 GHz, when the structure is excited in the X direction, a frequency at 10.35 GHz with a bandwidth of 0.44 GHz when the structure is excited in the Y direction. The simulation of the results obtained by the WCIP method is compared with the results of the software HFSS 13.0 (High Frequency Structure Simulator), we find a good agreement.