Optically Active Bionanomachine Interfaces Build Therapeutic Nanonetworks for Glioblastoma Multiforme

Avraam El Hamidieh, Nikolaos Dietis, A. Samoylenko, I. Meiser, Niovi Nicolaou, Eslam Abdelrady, A. Zhyvolozhnyi, S. Vainio, A. Odysseos
{"title":"Optically Active Bionanomachine Interfaces Build Therapeutic Nanonetworks for Glioblastoma Multiforme","authors":"Avraam El Hamidieh, Nikolaos Dietis, A. Samoylenko, I. Meiser, Niovi Nicolaou, Eslam Abdelrady, A. Zhyvolozhnyi, S. Vainio, A. Odysseos","doi":"10.1109/ismict56646.2022.9828125","DOIUrl":null,"url":null,"abstract":"The evolution of Glioblastoma Multiforme (GBM) is defined by the dynamics of growing bionanomachine networks in an interplay between \"senders\" or \"transceivers\" and \"receivers\". Central to this process are the inter-communications between sub-cellular bionanomachines secreted by GBM cells in the form of exosomes. Herein we present a dynamic cell-based therapeutic nanonetwork of genetically engineered optically active bionanomachines. The communication paradigm is defined by the interaction between neural stem cell-derived exosomes expressing Enhanced Green Fluorescent Protein and GBM cells expressing Tandem Dimer Tomato protein (tdT), based on the dynamic transfer of energies of excited state bionanomachines in resonance. With EGFP serving as energy donor and tdT as energy acceptor we provide multilevel evidence validating a Förster Resonance Energy Transfer - mediated interaction between GBM cells and exosomes, therefore documenting their sustainable and close proximity. Such an approach has the potential to enable wireless communication between optically active bionanomachines via quantifiable interfaces within channel networks, further enabling mechanistic and therapeutic models.","PeriodicalId":436823,"journal":{"name":"2022 IEEE 16th International Symposium on Medical Information and Communication Technology (ISMICT)","volume":"40 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Symposium on Medical Information and Communication Technology (ISMICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ismict56646.2022.9828125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of Glioblastoma Multiforme (GBM) is defined by the dynamics of growing bionanomachine networks in an interplay between "senders" or "transceivers" and "receivers". Central to this process are the inter-communications between sub-cellular bionanomachines secreted by GBM cells in the form of exosomes. Herein we present a dynamic cell-based therapeutic nanonetwork of genetically engineered optically active bionanomachines. The communication paradigm is defined by the interaction between neural stem cell-derived exosomes expressing Enhanced Green Fluorescent Protein and GBM cells expressing Tandem Dimer Tomato protein (tdT), based on the dynamic transfer of energies of excited state bionanomachines in resonance. With EGFP serving as energy donor and tdT as energy acceptor we provide multilevel evidence validating a Förster Resonance Energy Transfer - mediated interaction between GBM cells and exosomes, therefore documenting their sustainable and close proximity. Such an approach has the potential to enable wireless communication between optically active bionanomachines via quantifiable interfaces within channel networks, further enabling mechanistic and therapeutic models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学活性生物机器界面构建多形性胶质母细胞瘤治疗性纳米网络
多形性胶质母细胞瘤(GBM)的进化是由在“发送者”或“收发者”和“接收者”之间相互作用的不断增长的生物神经网络的动力学所定义的。这一过程的核心是由GBM细胞以外泌体的形式分泌的亚细胞生物异常机器之间的相互通信。在这里,我们提出了一个动态的基于细胞的治疗纳米网络的基因工程光学活性生物机器。这种通讯模式是由表达增强型绿色荧光蛋白的神经干细胞衍生外泌体和表达串联二聚体番茄蛋白(tdT)的GBM细胞之间的相互作用所定义的,这种相互作用基于激发态生物异常机器在共振中的能量动态转移。EGFP作为能量供体,tdT作为能量受体,我们提供了多层次的证据,验证了Förster共振能量转移介导的GBM细胞和外泌体之间的相互作用,因此记录了它们的持续和密切的关系。这种方法有可能通过通道网络中的可量化接口实现光活性生物机器之间的无线通信,进一步实现机制和治疗模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optically Active Bionanomachine Interfaces Build Therapeutic Nanonetworks for Glioblastoma Multiforme Enhancing Nanocarrier Trigger-Sensitivity for Targeted Drug Delivery Application using Ligand-Receptor Residence Time Factor ISMICT 2022 Cover Page Study of P300 Detection Performance by Different P300 Speller Approaches Using Electroencephalography E-Textile Garment Simulation to Improve ECG Data Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1