Metal Oxide Semiconductor Based Electronic Nose as Classification and Prediction Instrument for Nicotine Concentration in Unflavoured Electronic Juice

Tisna Julian, S. Hidayat, K. Triyana
{"title":"Metal Oxide Semiconductor Based Electronic Nose as Classification and Prediction Instrument for Nicotine Concentration in Unflavoured Electronic Juice","authors":"Tisna Julian, S. Hidayat, K. Triyana","doi":"10.1109/ICSTC.2018.8528686","DOIUrl":null,"url":null,"abstract":"This study aims to apply electronic nose as an instrument to measure the concentration of dissolved nicotine in unflavored e-juice. The electronic nose used in this study consisted of six metal oxide semiconductor (MOS) gas sensors. E-nose response data were analyzed using statistical methods to create predictive models. The classification algorithm, Linear Discriminant Analysis (LDA), and the regression algorithm, Partial Least Square (PLS), show that MOS based electronics noses can be applied to classify and predict the concentration of dissolved nicotine in e-juice.","PeriodicalId":196768,"journal":{"name":"2018 4th International Conference on Science and Technology (ICST)","volume":"29 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Science and Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTC.2018.8528686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study aims to apply electronic nose as an instrument to measure the concentration of dissolved nicotine in unflavored e-juice. The electronic nose used in this study consisted of six metal oxide semiconductor (MOS) gas sensors. E-nose response data were analyzed using statistical methods to create predictive models. The classification algorithm, Linear Discriminant Analysis (LDA), and the regression algorithm, Partial Least Square (PLS), show that MOS based electronics noses can be applied to classify and predict the concentration of dissolved nicotine in e-juice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属氧化物半导体电子鼻作为无味电子汁中尼古丁浓度的分类与预测仪器
本研究旨在应用电子鼻作为一种仪器来测量无味电子果汁中溶解尼古丁的浓度。电子鼻由6个金属氧化物半导体(MOS)气体传感器组成。利用统计学方法对电子鼻响应数据进行分析,建立预测模型。分类算法线性判别分析(LDA)和回归算法偏最小二乘(PLS)表明,基于MOS的电子鼻可以对电子烟中溶解尼古丁的浓度进行分类和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blade Depth Investigation on Cross-flow Turbine by Numerical Method Metal Oxide Semiconductor Based Electronic Nose as Classification and Prediction Instrument for Nicotine Concentration in Unflavoured Electronic Juice An Improved Implementation of Discretization Algorithm for Markov Reward Models Analysis of the Effects of Overflow Leakage Phenomenon on Archimedes Turbine Efficiency Analysis of Mental Workload in Human Resource Department
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1