A dynamic screening algorithm for hierarchical binary marketing data

Yimei Fan, Yuan Liao, I. Ryzhov, Kunpeng Zhang
{"title":"A dynamic screening algorithm for hierarchical binary marketing data","authors":"Yimei Fan, Yuan Liao, I. Ryzhov, Kunpeng Zhang","doi":"10.1214/22-aoas1720","DOIUrl":null,"url":null,"abstract":"In many applications of business and marketing analytics, predictive models are fit using hierarchically structured data: common characteristics of products, customers, or webpages are represented as categorical variables, and each category can be split up into multiple subcategories at a lower level of the hierarchy. The model may thus contain hundreds of thousands of binary variables, necessitating the use of variable selection to screen out large numbers of irrelevant or insignificant features. We propose a new dynamic screening method, based on the distance correlation criterion, designed for hierarchical binary data. Our method can screen out large parts of the hierarchy at the higher levels, avoiding the need to explore many lower-level features and greatly reducing the computational cost of screening. The practical potential of the method is demonstrated in a case application on user-brand interaction data from Facebook.","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":" 24","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aoas1720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In many applications of business and marketing analytics, predictive models are fit using hierarchically structured data: common characteristics of products, customers, or webpages are represented as categorical variables, and each category can be split up into multiple subcategories at a lower level of the hierarchy. The model may thus contain hundreds of thousands of binary variables, necessitating the use of variable selection to screen out large numbers of irrelevant or insignificant features. We propose a new dynamic screening method, based on the distance correlation criterion, designed for hierarchical binary data. Our method can screen out large parts of the hierarchy at the higher levels, avoiding the need to explore many lower-level features and greatly reducing the computational cost of screening. The practical potential of the method is demonstrated in a case application on user-brand interaction data from Facebook.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分级二元营销数据的动态筛选算法
在商业和市场分析的许多应用中,预测模型是使用层次结构数据来拟合的:产品、客户或网页的共同特征被表示为分类变量,每个类别可以在层次结构的较低层次上分成多个子类别。因此,模型可能包含数十万个二元变量,需要使用变量选择来筛选大量不相关或不重要的特征。提出了一种基于距离相关准则的分层二值数据动态筛选方法。我们的方法可以在较高层次上筛选出大部分层次结构,避免了探索许多较低层次特征的需要,大大降低了筛选的计算成本。该方法的实际潜力在Facebook用户品牌交互数据的案例应用中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A hierarchical spline model for correcting and hindcasting temperature data Risk-aware restricted outcome learning for individualized treatment regimes of schizophrenia A framework for analysing longitudinal data involving time-varying covariates How are PreLaunch online movie reviews related to box office revenues? Tensor regression for incomplete observations with application to longitudinal studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1