首页 > 最新文献

The Annals of Applied Statistics最新文献

英文 中文
A marginal structural model for partial compliance in SMARTs SMART 中部分履约的边际结构模型
Pub Date : 2024-06-01 DOI: 10.1214/21-aoas1586
William J Artman, Indrabati Bhattacharya, Ashkan Ertefaie, Kevin G. Lynch, James R. McKay, Brent A. Johnson
The cyclical and heterogeneous nature of many substance use disorders highlights the need to adapt the type and/or the dose of treatment to accommodate the specific and changing needs of individuals. The Adaptive Treatment for Alcohol and Cocaine Dependence study (ENGAGE) is a sequential multiple assignment randomized trial (SMART) that aimed to provide longitudinal data for constructing dynamic treatment regimes (DTRs) to improve patients’ engagement in therapy. However, the high rate of noncompliance and lack of analytic tools to account for noncompliance has impeded researchers from using the data to achieve the main goal of the trial; namely, the construction of individually tailored DTRs. We overcome this issue by defining our target parameter as the mean outcome under different DTRs for given potential compliance strata and propose a marginal structural model with principal stratification to estimate this quantity. We model the latent principal strata using a Bayesian semiparametric approach. An important feature of our work is that we consider partial rather than binary compliance strata which is more relevant in longitudinal studies. We assess the performance of our method through simulation. We illustrate its application on the ENGAGE study and demonstrate that the optimal DTRs depend on compliance strata compared with ignoring compliance information as in intention-to-treat analyses.
许多药物使用障碍具有周期性和异质性的特点,因此需要调整治疗类型和/或剂量,以适应个体不断变化的特殊需求。酒精和可卡因依赖的适应性治疗研究(ENGAGE)是一项连续多次分配随机试验(SMART),旨在为构建动态治疗方案(DTR)提供纵向数据,以提高患者的治疗参与度。然而,高不依从率和缺乏解释不依从性的分析工具阻碍了研究人员利用这些数据实现试验的主要目标,即构建个体化的动态治疗方案。为了克服这一问题,我们将目标参数定义为给定潜在合规性分层的不同 DTR 下的平均结果,并提出了一个具有主分层的边际结构模型来估算这一结果。我们采用贝叶斯半参数方法对潜在的主分层进行建模。我们工作的一个重要特点是,我们考虑的是部分而非二元遵从性分层,这与纵向研究更为相关。我们通过模拟来评估我们方法的性能。我们说明了该方法在 ENGAGE 研究中的应用,并证明与意向治疗分析中忽略依从性信息相比,最佳 DTR 取决于依从性分层。
{"title":"A marginal structural model for partial compliance in SMARTs","authors":"William J Artman, Indrabati Bhattacharya, Ashkan Ertefaie, Kevin G. Lynch, James R. McKay, Brent A. Johnson","doi":"10.1214/21-aoas1586","DOIUrl":"https://doi.org/10.1214/21-aoas1586","url":null,"abstract":"The cyclical and heterogeneous nature of many substance use disorders highlights the need to adapt the type and/or the dose of treatment to accommodate the specific and changing needs of individuals. The Adaptive Treatment for Alcohol and Cocaine Dependence study (ENGAGE) is a sequential multiple assignment randomized trial (SMART) that aimed to provide longitudinal data for constructing dynamic treatment regimes (DTRs) to improve patients’ engagement in therapy. However, the high rate of noncompliance and lack of analytic tools to account for noncompliance has impeded researchers from using the data to achieve the main goal of the trial; namely, the construction of individually tailored DTRs. We overcome this issue by defining our target parameter as the mean outcome under different DTRs for given potential compliance strata and propose a marginal structural model with principal stratification to estimate this quantity. We model the latent principal strata using a Bayesian semiparametric approach. An important feature of our work is that we consider partial rather than binary compliance strata which is more relevant in longitudinal studies. We assess the performance of our method through simulation. We illustrate its application on the ENGAGE study and demonstrate that the optimal DTRs depend on compliance strata compared with ignoring compliance information as in intention-to-treat analyses.","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"22 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141233182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
As treated analyses of cluster randomized trials 分组随机试验的处理分析
Pub Date : 2024-06-01 DOI: 10.1214/23-aoas1846
Ari I. F. Fogelson, Kirsten E. Landsiedel, Suzanne M. Dufault, Nicholas P. Jewell
{"title":"As treated analyses of cluster randomized trials","authors":"Ari I. F. Fogelson, Kirsten E. Landsiedel, Suzanne M. Dufault, Nicholas P. Jewell","doi":"10.1214/23-aoas1846","DOIUrl":"https://doi.org/10.1214/23-aoas1846","url":null,"abstract":"","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141234209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Readability prediction: How many features are necessary? 可读性预测:需要多少特征?
Pub Date : 2024-06-01 DOI: 10.1214/23-aoas1820
F. Schwendinger, Laura Vana, Kurt Hornik
{"title":"Readability prediction: How many features are necessary?","authors":"F. Schwendinger, Laura Vana, Kurt Hornik","doi":"10.1214/23-aoas1820","DOIUrl":"https://doi.org/10.1214/23-aoas1820","url":null,"abstract":"","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"23 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141235574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient and effective calibration of numerical model outputs using hierarchical dynamic models 利用分层动态模型高效校准数值模型输出结果
Pub Date : 2024-06-01 DOI: 10.1214/23-aoas1823
Yewen Chen, Xiaohui Chang, Bohai Zhang, Hui Huang
{"title":"Efficient and effective calibration of numerical model outputs using hierarchical dynamic models","authors":"Yewen Chen, Xiaohui Chang, Bohai Zhang, Hui Huang","doi":"10.1214/23-aoas1823","DOIUrl":"https://doi.org/10.1214/23-aoas1823","url":null,"abstract":"","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"36 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141231953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensor regression for incomplete observations with application to longitudinal studies 不完整观测数据的张量回归及其在纵向研究中的应用
Pub Date : 2024-06-01 DOI: 10.1214/23-aoas1830
Tianchen Xu, Kun Chen, Gen Li
{"title":"Tensor regression for incomplete observations with application to longitudinal studies","authors":"Tianchen Xu, Kun Chen, Gen Li","doi":"10.1214/23-aoas1830","DOIUrl":"https://doi.org/10.1214/23-aoas1830","url":null,"abstract":"","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"2 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141230750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Information-incorporated clustering analysis of disease prevalence trends 疾病流行趋势的信息整合聚类分析
Pub Date : 2024-06-01 DOI: 10.1214/23-aoas1821
Chenjin Ma, Cunjie Lin, Yuan Xue, Sanguo Zhang, Qingzhao Zhang, Shuangge Ma
{"title":"Information-incorporated clustering analysis of disease prevalence trends","authors":"Chenjin Ma, Cunjie Lin, Yuan Xue, Sanguo Zhang, Qingzhao Zhang, Shuangge Ma","doi":"10.1214/23-aoas1821","DOIUrl":"https://doi.org/10.1214/23-aoas1821","url":null,"abstract":"","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"47 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141232615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional partial least squares with censored outcomes: Prediction of breast cancer risk with mammogram images 有删减结果的功能偏最小二乘法:利用乳房 X 光图像预测乳腺癌风险
Pub Date : 2024-06-01 DOI: 10.1214/23-aoas1822
Shu Jiang, Jiguo Cao, G. A. Colditz
{"title":"Functional partial least squares with censored outcomes: Prediction of breast cancer risk with mammogram images","authors":"Shu Jiang, Jiguo Cao, G. A. Colditz","doi":"10.1214/23-aoas1822","DOIUrl":"https://doi.org/10.1214/23-aoas1822","url":null,"abstract":"","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"63 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141231382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-dimensional approach to measure connectivity in the financial sector 衡量金融业连通性的高维方法
Pub Date : 2024-06-01 DOI: 10.1214/22-aoas1702
Sumanta Basu, Sreyoshi Das, George Michailidis, A. Purnanandam
{"title":"A high-dimensional approach to measure connectivity in the financial sector","authors":"Sumanta Basu, Sreyoshi Das, George Michailidis, A. Purnanandam","doi":"10.1214/22-aoas1702","DOIUrl":"https://doi.org/10.1214/22-aoas1702","url":null,"abstract":"","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"29 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141234907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hierarchical spline model for correcting and hindcasting temperature data 用于校正和后报温度数据的分层样条模型
Pub Date : 2024-06-01 DOI: 10.1214/23-aoas1855
Theodoros Economou, Catrina Johnson, Elizabeth Dyson
{"title":"A hierarchical spline model for correcting and hindcasting temperature data","authors":"Theodoros Economou, Catrina Johnson, Elizabeth Dyson","doi":"10.1214/23-aoas1855","DOIUrl":"https://doi.org/10.1214/23-aoas1855","url":null,"abstract":"","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"2 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141229272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical dependence modeling for the analysis of large insurance claims data 用于分析大型保险理赔数据的分层依赖模型
Pub Date : 2024-06-01 DOI: 10.1214/23-aoas1840
Ting Fung Ma, Yizhou Cai, Peng Shi, Jun Zhu
{"title":"Hierarchical dependence modeling for the analysis of large insurance claims data","authors":"Ting Fung Ma, Yizhou Cai, Peng Shi, Jun Zhu","doi":"10.1214/23-aoas1840","DOIUrl":"https://doi.org/10.1214/23-aoas1840","url":null,"abstract":"","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"23 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Annals of Applied Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1