Personalizing Social Influence Strategies in a Q&A Social Network

I. Adaji, Julita Vassileva
{"title":"Personalizing Social Influence Strategies in a Q&A Social Network","authors":"I. Adaji, Julita Vassileva","doi":"10.1145/3099023.3099057","DOIUrl":null,"url":null,"abstract":"Research has shown that persuasive technologies are more effective when they are personalized. Persuasive strategies work differently for various people; hence a one size fits all approach may not bring about the desired change in behavior or attitude. This paper contributes to personalization in question and answer (Q&A) social networks by exploring the possibility of personalizing social influence strategies based on the computer programming skill level and the highest level of education of users. In particular, this paper explores the susceptibility of users in Stack Overflow, a Q&A social network, to social support influence strategies for novice and expert computer programmers. In addition, we explore if first degree holders respond to the social support influence strategies the same way graduate degree holders do. Using a sample size of 282 Stack Overflow users, we constructed four models using Partial Least Squares Structural Equation Modelling (PLS-SEM) and carried out multi-group analysis between these models. The results of our analysis show that social facilitation significantly influences cooperation for novice programmers, but not for expert programmers. In addition, social learning does not significantly influence the persuasiveness of the system for expert programmers compared to users who are novice in computer programming. For the users grouped according to their highest level of education, social learning influenced cooperation among the graduate degree holders and competition influenced the graduate degree holders to continue using the system. The result of this study can provide useful guidelines to social network developers that can be used in implementing personalized influence strategies in Q&A social communities.","PeriodicalId":219391,"journal":{"name":"Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3099023.3099057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Research has shown that persuasive technologies are more effective when they are personalized. Persuasive strategies work differently for various people; hence a one size fits all approach may not bring about the desired change in behavior or attitude. This paper contributes to personalization in question and answer (Q&A) social networks by exploring the possibility of personalizing social influence strategies based on the computer programming skill level and the highest level of education of users. In particular, this paper explores the susceptibility of users in Stack Overflow, a Q&A social network, to social support influence strategies for novice and expert computer programmers. In addition, we explore if first degree holders respond to the social support influence strategies the same way graduate degree holders do. Using a sample size of 282 Stack Overflow users, we constructed four models using Partial Least Squares Structural Equation Modelling (PLS-SEM) and carried out multi-group analysis between these models. The results of our analysis show that social facilitation significantly influences cooperation for novice programmers, but not for expert programmers. In addition, social learning does not significantly influence the persuasiveness of the system for expert programmers compared to users who are novice in computer programming. For the users grouped according to their highest level of education, social learning influenced cooperation among the graduate degree holders and competition influenced the graduate degree holders to continue using the system. The result of this study can provide useful guidelines to social network developers that can be used in implementing personalized influence strategies in Q&A social communities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在问答社交网络中个性化社会影响策略
研究表明,说服技术在个性化的情况下更有效。说服策略对不同的人有不同的效果;因此,一刀切的方法可能不会带来期望的行为或态度的改变。本文通过探索基于计算机编程技能水平和用户最高教育水平的个性化社会影响策略的可能性,为问答(Q&A)社交网络的个性化做出贡献。本文特别探讨了Stack Overflow(一个问答社交网络)用户对新手和专家计算机程序员的社会支持影响策略的敏感性。此外,我们还探讨了第一学位持有者对社会支持影响策略的反应是否与研究生学位持有者的反应相同。以282名Stack Overflow用户为样本,利用偏最小二乘结构方程模型(PLS-SEM)构建了4个模型,并对模型进行了多组分析。我们的分析结果表明,社会便利对新手程序员的合作有显著影响,而对老手程序员没有显著影响。此外,与计算机编程新手相比,社会学习对专家程序员系统的说服力没有显著影响。对于按最高受教育程度分组的用户,社会学习影响研究生学位持有者之间的合作,竞争影响研究生学位持有者继续使用系统。本研究的结果可以为社交网络开发者提供有用的指导方针,可用于在问答社交社区中实施个性化影响策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Influence of Culture in the Effect of Age and Gender on Social Influence in Persuasive Technology Automated Data-Driven Hints for Computer Programming Students An Approach to Improve Physical Activity by Generating Individual Implementation Intentions Personalizing Social Influence Strategies in a Q&A Social Network Adaptive Support For Group Formation In Computer Supported Collaborative Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1