A Fast Bidirectional Method for Mining Maximal Frequent Itemsets

Chao Wang, Zhi-Wei Ni, Jun-fen Guo
{"title":"A Fast Bidirectional Method for Mining Maximal Frequent Itemsets","authors":"Chao Wang, Zhi-Wei Ni, Jun-fen Guo","doi":"10.1109/CSO.2010.105","DOIUrl":null,"url":null,"abstract":"In this paper, a fast bi-directional method and an efficient data compression method for mining maximal frequent itemsets is proposed. A flexible search method is given, which exploits the advantages of bottom-up and up-bottom strategies. The compression technique use the Prime number characteristics to transform transaction data into a positive integer and can efficiently reduce the size of transaction database. This method can mine maximal frequent itemsets according to different user-defined minimum support with only one scan of original database. Theoretical and experimental analysis shows that the proposed method is scalable and efficient for mining maximal frequent itemsets.","PeriodicalId":427481,"journal":{"name":"2010 Third International Joint Conference on Computational Science and Optimization","volume":"72 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Joint Conference on Computational Science and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2010.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a fast bi-directional method and an efficient data compression method for mining maximal frequent itemsets is proposed. A flexible search method is given, which exploits the advantages of bottom-up and up-bottom strategies. The compression technique use the Prime number characteristics to transform transaction data into a positive integer and can efficiently reduce the size of transaction database. This method can mine maximal frequent itemsets according to different user-defined minimum support with only one scan of original database. Theoretical and experimental analysis shows that the proposed method is scalable and efficient for mining maximal frequent itemsets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种快速双向挖掘最大频繁项集的方法
本文提出了一种快速双向挖掘最大频繁项集的方法和一种高效的数据压缩方法。利用自底向上和自底向上策略的优点,给出了一种灵活的搜索方法。压缩技术利用素数特征将事务数据转换为正整数,可以有效地减小事务数据库的大小。该方法只需要对原始数据库进行一次扫描,就可以根据不同的用户自定义最小支持度挖掘最大频繁项集。理论和实验分析表明,该方法具有可扩展性和挖掘最大频繁项集的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the Internal Fraud Risk of Chinese Commercial Banks A Fast Bidirectional Method for Mining Maximal Frequent Itemsets A Prediction of the Monthly Precipitation Model Based on PSO-ANN and its Applications On the Analysis of Performance of the Artificial Tribe Algorithm Analysis on the Volatility of SHIBOR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1