Explore the Performance of Capsule Neural Network Learning Discrete Features

Pengfei Shen, Luke Yan, Yanan Xu, Jiaqing Wu, Ting Cai
{"title":"Explore the Performance of Capsule Neural Network Learning Discrete Features","authors":"Pengfei Shen, Luke Yan, Yanan Xu, Jiaqing Wu, Ting Cai","doi":"10.1109/ICNISC54316.2021.00182","DOIUrl":null,"url":null,"abstract":"The continuous breakthrough of deep learning model in image processing, natural language processing and other fields is mainly due to the strong ability of deep neural network in feature extraction. Based on the idea of capsule neural network, this paper proposes a capsule neural network for general classification problems, and explores the learning ability of capsule network model for classification problems of discrete feature. In order to evaluate the capsule network model, this paper verifies the effect of the model on real datasets, and makes a comparative analysis with common machine learning classification algorithms.","PeriodicalId":396802,"journal":{"name":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC54316.2021.00182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The continuous breakthrough of deep learning model in image processing, natural language processing and other fields is mainly due to the strong ability of deep neural network in feature extraction. Based on the idea of capsule neural network, this paper proposes a capsule neural network for general classification problems, and explores the learning ability of capsule network model for classification problems of discrete feature. In order to evaluate the capsule network model, this paper verifies the effect of the model on real datasets, and makes a comparative analysis with common machine learning classification algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探讨胶囊神经网络学习离散特征的性能
深度学习模型在图像处理、自然语言处理等领域的不断突破,主要得益于深度神经网络在特征提取方面的强大能力。基于胶囊神经网络的思想,提出了一种用于一般分类问题的胶囊神经网络,并探讨了胶囊网络模型用于离散特征分类问题的学习能力。为了对胶囊网络模型进行评价,本文在实际数据集上验证了该模型的效果,并与常用的机器学习分类算法进行了对比分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explore the Performance of Capsule Neural Network Learning Discrete Features Profiling Pumped Storage Power Station via Multi-Sequence Joint Regression Trajectory Tracking Technology for Crawler Rescue Robot Insight into the Inhibitory Activities of Diverse Ligands for Tyrosinase Using Molecular and Structure-based Features Design and Optimization of Ultrasonic Fatigue Specimen Based on ANSYS Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1