Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery

Qianru Jiang, R. D. Lamare, Y. Zakharov, Sheng Li, Xiongxiong He
{"title":"Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery","authors":"Qianru Jiang, R. D. Lamare, Y. Zakharov, Sheng Li, Xiongxiong He","doi":"10.23919/EUSIPCO.2018.8553389","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of sparse recovery often found in compressive sensing applications exploiting a priori knowledge. In particular, we present a knowledge-aided normalized iterative hard thresholding (KA-NIHT) algorithm that exploits information about the probabilities of nonzero entries. We also develop a strategy to update the probabilities using a recursive KA-NIHT (RKA-NIHT) algorithm, which results in improved recovery. Simulation results illustrate and compare the performance of the proposed and existing algorithms.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"629 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper deals with the problem of sparse recovery often found in compressive sensing applications exploiting a priori knowledge. In particular, we present a knowledge-aided normalized iterative hard thresholding (KA-NIHT) algorithm that exploits information about the probabilities of nonzero entries. We also develop a strategy to update the probabilities using a recursive KA-NIHT (RKA-NIHT) algorithm, which results in improved recovery. Simulation results illustrate and compare the performance of the proposed and existing algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏恢复的知识辅助归一化迭代硬阈值算法
本文研究了利用先验知识的压缩感知应用中常见的稀疏恢复问题。特别地,我们提出了一种利用非零条目概率信息的知识辅助归一化迭代硬阈值(KA-NIHT)算法。我们还开发了一种使用递归KA-NIHT (RKA-NIHT)算法更新概率的策略,从而提高了恢复率。仿真结果验证并比较了所提算法和现有算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1