Extrapolation With Gaussian Random Processes and Evolutionary Programming

R. Planas, Nicholas Oune, R. Bostanabad
{"title":"Extrapolation With Gaussian Random Processes and Evolutionary Programming","authors":"R. Planas, Nicholas Oune, R. Bostanabad","doi":"10.1115/detc2020-22381","DOIUrl":null,"url":null,"abstract":"\n Emulation plays an indispensable role in engineering design. However, the majority of emulation methods are formulated for interpolation purposes and their performance significantly deteriorates in extrapolation. In this paper, we develop a method for extrapolation by integrating Gaussian processes (GPs) and evolutionary programming (EP). Our underlying assumption is that there is a set of free-form parametric bases that can model the data source reasonably well. Consequently, if we can find these bases via some training data over a region, we can do predictions outside of that region. To systematically and efficiently find these bases, we start by learning a GP without any parametric mean function. Then, a rich dataset is generated by this GP and subsequently used in EP to find some parametric bases. Afterwards, we retrain the GP while using the bases found by EP. This retraining essentially allows to validate and/or correct the discovered bases via maximum likelihood estimation. By iterating between GP and EP we robustly and efficiently find the underlying bases that can be used for extrapolation. We validate our approach with a host of analytical problems in the absence or presence of noise. We also study an engineering example on finding the constitutive law of a composite microstructure.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"58 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Emulation plays an indispensable role in engineering design. However, the majority of emulation methods are formulated for interpolation purposes and their performance significantly deteriorates in extrapolation. In this paper, we develop a method for extrapolation by integrating Gaussian processes (GPs) and evolutionary programming (EP). Our underlying assumption is that there is a set of free-form parametric bases that can model the data source reasonably well. Consequently, if we can find these bases via some training data over a region, we can do predictions outside of that region. To systematically and efficiently find these bases, we start by learning a GP without any parametric mean function. Then, a rich dataset is generated by this GP and subsequently used in EP to find some parametric bases. Afterwards, we retrain the GP while using the bases found by EP. This retraining essentially allows to validate and/or correct the discovered bases via maximum likelihood estimation. By iterating between GP and EP we robustly and efficiently find the underlying bases that can be used for extrapolation. We validate our approach with a host of analytical problems in the absence or presence of noise. We also study an engineering example on finding the constitutive law of a composite microstructure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯随机过程外推与进化规划
仿真在工程设计中起着不可缺少的作用。然而,大多数仿真方法都是为了插值目的而制定的,它们的性能在外推时明显下降。本文提出了一种将高斯过程(gp)与进化规划(EP)相结合的外推方法。我们的基本假设是存在一组自由形式的参数基,可以很好地对数据源建模。因此,如果我们可以通过某个区域的训练数据找到这些基础,我们就可以在该区域之外进行预测。为了系统有效地找到这些基,我们从学习没有任何参数平均函数的GP开始。然后,利用该GP生成一个富数据集,并将其用于EP中查找一些参数基。之后,我们重新训练GP,同时使用EP发现的基地。这种再训练本质上允许通过最大似然估计验证和/或纠正发现的基础。通过在GP和EP之间的迭代,我们稳健有效地找到了可用于外推的基础。我们在没有或存在噪声的情况下用大量的分析问题验证了我们的方法。研究了复合材料微观结构本构规律的工程实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extrapolation With Gaussian Random Processes and Evolutionary Programming Design and Optimization of Functionally Graded Superelastic NiTi Stents Topic Modeling and Sentiment Analysis of Social Media Data to Drive Experiential Redesign Risk-Averse Optimization for Resilience Enhancement Under Uncertainty Multi-Objective Design Exploration of a Canine Ventriculoperitoneal Shunt for Hydrocephalus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1