S. Whiting, K. Zhou, J. Jose, Omar Alonso, Teerapong Leelanupab
{"title":"CrowdTiles: presenting crowd-based information for event-driven information needs","authors":"S. Whiting, K. Zhou, J. Jose, Omar Alonso, Teerapong Leelanupab","doi":"10.1145/2396761.2398731","DOIUrl":null,"url":null,"abstract":"Time plays a central role in many web search information needs relating to recent events. For recency queries where fresh information is most desirable, there is likely to be a great deal of highly-relevant information created very recently by crowds of people across the world, particularly on platforms such as Wikipedia and Twitter. With so many users, mainstream events are often very quickly reflected in these sources. The English Wikipedia encyclopedia consists of a vast collection of user-edited articles covering a range of topics. During events, users collaboratively create and edit existing articles in near real-time. Simultaneously, users on Twitter disseminate and discuss event details, with a small number of users becoming influential for the topic. In this demo, we propose a novel approach to presenting a summary of new information and users related to recent or ongoing events associated with the user's search topic, therefore aiding most recent information discovery. We outline methods to detect search topics which are driven by events, identify and extract changing Wikipedia article passages and find influential Twitter users. Using these, we provide a system which displays familiar tiles in search results to present recent changes in the event-related Wikipedia articles, as well as Twitter users who have tweeted recent relevant information about the event topics.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":" 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Time plays a central role in many web search information needs relating to recent events. For recency queries where fresh information is most desirable, there is likely to be a great deal of highly-relevant information created very recently by crowds of people across the world, particularly on platforms such as Wikipedia and Twitter. With so many users, mainstream events are often very quickly reflected in these sources. The English Wikipedia encyclopedia consists of a vast collection of user-edited articles covering a range of topics. During events, users collaboratively create and edit existing articles in near real-time. Simultaneously, users on Twitter disseminate and discuss event details, with a small number of users becoming influential for the topic. In this demo, we propose a novel approach to presenting a summary of new information and users related to recent or ongoing events associated with the user's search topic, therefore aiding most recent information discovery. We outline methods to detect search topics which are driven by events, identify and extract changing Wikipedia article passages and find influential Twitter users. Using these, we provide a system which displays familiar tiles in search results to present recent changes in the event-related Wikipedia articles, as well as Twitter users who have tweeted recent relevant information about the event topics.