HATS

Changping Meng, Jiasen Yang, Bruno Ribeiro, Jennifer Neville
{"title":"HATS","authors":"Changping Meng, Jiasen Yang, Bruno Ribeiro, Jennifer Neville","doi":"10.1145/3292500.3330876","DOIUrl":null,"url":null,"abstract":"In many complex domains, the input data are often not suited for the typical vector representations used in deep learning models. For example, in relational learning and computer vision tasks, the data are often better represented as sets (e.g., the neighborhood of a node, a cloud of points). In these cases, a key challenge is to learn an embedding function that is invariant to permutations of the input. While there has been some recent work on principled methods for learning permutation-invariant representations of sets, these approaches are limited in their applicability to set-of-sets (SoS) tasks, such as subgraph prediction and scene classification. In this work, we develop a deep neural network framework to learn inductive SoS embeddings that are invariant to SoS permutations. Specifically, we propose HATS, a hierarchical sequence model with attention mechanisms for inductive set-of-sets embeddings. We develop stochastic optimization and inference methods for learning HATS, and our experiments demonstrate that HATS achieves superior performance across a wide range of set-of-sets tasks.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In many complex domains, the input data are often not suited for the typical vector representations used in deep learning models. For example, in relational learning and computer vision tasks, the data are often better represented as sets (e.g., the neighborhood of a node, a cloud of points). In these cases, a key challenge is to learn an embedding function that is invariant to permutations of the input. While there has been some recent work on principled methods for learning permutation-invariant representations of sets, these approaches are limited in their applicability to set-of-sets (SoS) tasks, such as subgraph prediction and scene classification. In this work, we develop a deep neural network framework to learn inductive SoS embeddings that are invariant to SoS permutations. Specifically, we propose HATS, a hierarchical sequence model with attention mechanisms for inductive set-of-sets embeddings. We develop stochastic optimization and inference methods for learning HATS, and our experiments demonstrate that HATS achieves superior performance across a wide range of set-of-sets tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
帽子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1