CALOREE: Learning Control for Predictable Latency and Low Energy

Nikita Mishra, Connor Imes, J. Lafferty, H. Hoffmann
{"title":"CALOREE: Learning Control for Predictable Latency and Low Energy","authors":"Nikita Mishra, Connor Imes, J. Lafferty, H. Hoffmann","doi":"10.1145/3173162.3173184","DOIUrl":null,"url":null,"abstract":"Many modern computing systems must provide reliable latency with minimal energy. Two central challenges arise when allocating system resources to meet these conflicting goals: (1) complexity modern hardware exposes diverse resources with complicated interactions and (2) dynamics latency must be maintained despite unpredictable changes in operating environment or input. Machine learning accurately models the latency of complex, interacting resources, but does not address system dynamics; control theory adjusts to dynamic changes, but struggles with complex resource interaction. We therefore propose CALOREE, a resource manager that learns key control parameters to meet latency requirements with minimal energy in complex, dynamic en- vironments. CALOREE breaks resource allocation into two sub-tasks: learning how interacting resources affect speedup, and controlling speedup to meet latency requirements with minimal energy. CALOREE deines a general control system whose parameters are customized by a learning framework while maintaining control-theoretic formal guarantees that the latency goal will be met. We test CALOREE's ability to deliver reliable latency on heterogeneous ARM big.LITTLE architectures in both single and multi-application scenarios. Compared to the best prior learning and control solutions, CALOREE reduces deadline misses by 60% and energy consumption by 13%.","PeriodicalId":302876,"journal":{"name":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173162.3173184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

Abstract

Many modern computing systems must provide reliable latency with minimal energy. Two central challenges arise when allocating system resources to meet these conflicting goals: (1) complexity modern hardware exposes diverse resources with complicated interactions and (2) dynamics latency must be maintained despite unpredictable changes in operating environment or input. Machine learning accurately models the latency of complex, interacting resources, but does not address system dynamics; control theory adjusts to dynamic changes, but struggles with complex resource interaction. We therefore propose CALOREE, a resource manager that learns key control parameters to meet latency requirements with minimal energy in complex, dynamic en- vironments. CALOREE breaks resource allocation into two sub-tasks: learning how interacting resources affect speedup, and controlling speedup to meet latency requirements with minimal energy. CALOREE deines a general control system whose parameters are customized by a learning framework while maintaining control-theoretic formal guarantees that the latency goal will be met. We test CALOREE's ability to deliver reliable latency on heterogeneous ARM big.LITTLE architectures in both single and multi-application scenarios. Compared to the best prior learning and control solutions, CALOREE reduces deadline misses by 60% and energy consumption by 13%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可预测延迟和低能量的学习控制
许多现代计算系统必须以最小的能量提供可靠的延迟。在分配系统资源以满足这些相互冲突的目标时,出现了两个主要挑战:(1)复杂性现代硬件暴露了具有复杂交互的各种资源;(2)尽管操作环境或输入发生了不可预测的变化,但必须保持动态延迟。机器学习准确地模拟了复杂的、相互作用的资源的延迟,但不解决系统动力学;控制理论能够适应动态变化,但难以应对复杂的资源交互作用。因此,我们提出一种资源管理器CALOREE,它可以学习关键控制参数,以满足复杂动态环境中最小能量的延迟要求。CALOREE将资源分配分解为两个子任务:学习交互资源如何影响加速,以及控制加速以最小的能量满足延迟要求。CALOREE定义了一种通用控制系统,其参数由学习框架自定义,同时保持控制理论形式保证延迟目标的满足。我们测试了CALOREE在异构ARM处理器上提供可靠延迟的能力。LITTLE架构适用于单一和多应用场景。与最佳的先验学习和控制解决方案相比,CALOREE将最后期限遗漏率降低了60%,能耗降低了13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CALOREE: Learning Control for Predictable Latency and Low Energy Session details: Session 7B: Memory 2 Session details: Session 4A: Memory 1 BranchScope: A New Side-Channel Attack on Directional Branch Predictor Devirtualizing Memory in Heterogeneous Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1