Hardware Support for Secure Stream Processing in Cloud Environments

Jeff Anderson, T. El-Ghazawi
{"title":"Hardware Support for Secure Stream Processing in Cloud Environments","authors":"Jeff Anderson, T. El-Ghazawi","doi":"10.1145/3075564.3075592","DOIUrl":null,"url":null,"abstract":"Many-core microprocessor architectures are quickly becoming prevalent in data centers, due to their demonstrated processing power and network flexibility. However, this flexibility comes at a cost; co-mingled data from disparate users must be kept secure, which forces processor cycles to be wasted on cryptographic operations. This paper introduces a novel, secure, stream processing architecture which supports efficient homomorphic authentication of data and enforces secrecy of individuals' data. Additionally, this architecture is shown to secure time-series analysis of data from multiple users from both corruption and disclosure. Hardware synthesis shows that security-related circuitry incurs less than 10% overhead, and latency analysis shows an increase of 2 clocks per hop. However, despite the increase in latency, the proposed architecture shows an improvement over stream processing systems that use traditional security methods.","PeriodicalId":398898,"journal":{"name":"Proceedings of the Computing Frontiers Conference","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Computing Frontiers Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3075564.3075592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many-core microprocessor architectures are quickly becoming prevalent in data centers, due to their demonstrated processing power and network flexibility. However, this flexibility comes at a cost; co-mingled data from disparate users must be kept secure, which forces processor cycles to be wasted on cryptographic operations. This paper introduces a novel, secure, stream processing architecture which supports efficient homomorphic authentication of data and enforces secrecy of individuals' data. Additionally, this architecture is shown to secure time-series analysis of data from multiple users from both corruption and disclosure. Hardware synthesis shows that security-related circuitry incurs less than 10% overhead, and latency analysis shows an increase of 2 clocks per hop. However, despite the increase in latency, the proposed architecture shows an improvement over stream processing systems that use traditional security methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云环境下安全流处理的硬件支持
多核微处理器架构由于其出色的处理能力和网络灵活性,在数据中心迅速流行起来。然而,这种灵活性是有代价的;来自不同用户的混合数据必须保持安全,这迫使处理器周期浪费在加密操作上。本文介绍了一种新的、安全的流处理体系结构,该体系结构支持数据的高效同态认证,并增强了个人数据的保密性。此外,该体系结构还可以保护来自多个用户的数据的时间序列分析,避免损坏和泄露。硬件综合显示,与安全相关的电路产生的开销不到10%,延迟分析显示,每跳增加2个时钟。然而,尽管延迟增加,所提出的体系结构比使用传统安全方法的流处理系统有了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Support for Secure Stream Processing in Cloud Environments Private inter-network routing for Wireless Sensor Networks and the Internet of Things Analytical Performance Modeling and Validation of Intel's Xeon Phi Architecture Design of S-boxes Defined with Cellular Automata Rules Cloud Workload Prediction by Means of Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1