Sound and precise malware analysis for android via pushdown reachability and entry-point saturation

Shuying Liang, Andrew W. Keep, M. Might, Steven Lyde, Thomas Gilray, P. Aldous, David Van Horn
{"title":"Sound and precise malware analysis for android via pushdown reachability and entry-point saturation","authors":"Shuying Liang, Andrew W. Keep, M. Might, Steven Lyde, Thomas Gilray, P. Aldous, David Van Horn","doi":"10.1145/2516760.2516769","DOIUrl":null,"url":null,"abstract":"Sound malware analysis of Android applications is challenging. First, object-oriented programs exhibit highly interprocedural, dynamically dispatched control structure. Second, the Android programming paradigm relies heavily on the asynchronous execution of multiple entry points. Existing analysis techniques focus more on the second challenge, while relying on traditional analytic techniques that suffer from inherent imprecision or unsoundness to solve the first.\n We present Anadroid, a static malware analysis framework for Android apps. Anadroid exploits two techniques to soundly raise precision: (1) it uses a pushdown system to precisely model dynamically dispatched interprocedural and exception-driven control-flow; (2) it uses Entry-Point Saturation (EPS) to soundly approximate all possible interleavings of asynchronous entry points in Android applications. (It also integrates static taint-flow analysis and least permissions analysis to expand the class of malicious behaviors which it can catch.) Anadroid provides rich user interface support for human analysts which must ultimately rule on the \"maliciousness\" of a behavior.\n To demonstrate the effectiveness of Anadroid's malware analysis, we had teams of analysts analyze a challenge suite of 52 Android applications released as part of the Automated Program Analysis for Cybersecurity (APAC) DARPA program. The first team analyzed the apps using a version of Anadroid that uses traditional (finite-state-machine-based) control-flow-analysis found in existing malware analysis tools; the second team analyzed the apps using a version of Anadroid that uses our enhanced pushdown-based control-flow-analysis. We measured machine analysis time, human analyst time, and their accuracy in flagging malicious applications. With pushdown analysis, we found statistically significant (p < 0.05) decreases in time: from 85 minutes per app to 35 minutes per app in human plus machine analysis time; and statistically significant (p < 0.05) increases in accuracy with the pushdown-driven analyzer: from 71% correct identification to 95% correct identification.","PeriodicalId":213305,"journal":{"name":"Security and Privacy in Smartphones and Mobile Devices","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Privacy in Smartphones and Mobile Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2516760.2516769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Sound malware analysis of Android applications is challenging. First, object-oriented programs exhibit highly interprocedural, dynamically dispatched control structure. Second, the Android programming paradigm relies heavily on the asynchronous execution of multiple entry points. Existing analysis techniques focus more on the second challenge, while relying on traditional analytic techniques that suffer from inherent imprecision or unsoundness to solve the first. We present Anadroid, a static malware analysis framework for Android apps. Anadroid exploits two techniques to soundly raise precision: (1) it uses a pushdown system to precisely model dynamically dispatched interprocedural and exception-driven control-flow; (2) it uses Entry-Point Saturation (EPS) to soundly approximate all possible interleavings of asynchronous entry points in Android applications. (It also integrates static taint-flow analysis and least permissions analysis to expand the class of malicious behaviors which it can catch.) Anadroid provides rich user interface support for human analysts which must ultimately rule on the "maliciousness" of a behavior. To demonstrate the effectiveness of Anadroid's malware analysis, we had teams of analysts analyze a challenge suite of 52 Android applications released as part of the Automated Program Analysis for Cybersecurity (APAC) DARPA program. The first team analyzed the apps using a version of Anadroid that uses traditional (finite-state-machine-based) control-flow-analysis found in existing malware analysis tools; the second team analyzed the apps using a version of Anadroid that uses our enhanced pushdown-based control-flow-analysis. We measured machine analysis time, human analyst time, and their accuracy in flagging malicious applications. With pushdown analysis, we found statistically significant (p < 0.05) decreases in time: from 85 minutes per app to 35 minutes per app in human plus machine analysis time; and statistically significant (p < 0.05) increases in accuracy with the pushdown-driven analyzer: from 71% correct identification to 95% correct identification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声音和精确的恶意软件分析android通过下推可达性和入口点饱和
Android应用程序的声音恶意软件分析具有挑战性。首先,面向对象程序表现出高度的过程间、动态调度的控制结构。其次,Android编程范式严重依赖于多个入口点的异步执行。现有的分析技术更多地关注于第二个挑战,而依靠传统的分析技术来解决第一个挑战,而传统的分析技术存在固有的不精确或不健全。我们提出Anadroid,一个静态恶意软件分析框架的Android应用程序。Anadroid利用了两种技术来提高精度:(1)使用下推系统来精确建模动态调度的过程间和异常驱动的控制流;(2)它使用入口点饱和(EPS)来很好地近似Android应用程序中异步入口点的所有可能交错。(它还集成了静态污染流分析和最小权限分析,以扩展它可以捕获的恶意行为的类别。)android为人类分析师提供了丰富的用户界面支持,这些分析师必须最终判断行为的“恶意”。为了证明Android恶意软件分析的有效性,我们让分析师团队分析了52个Android应用程序的挑战套件,这些应用程序是DARPA网络安全自动化程序分析(APAC)计划的一部分。第一个团队使用现有恶意软件分析工具中发现的传统(基于有限状态机的)控制流分析的android版本分析应用程序;第二个团队使用Anadroid版本分析应用程序,该版本使用我们增强的基于下推的控制流分析。我们测量了机器分析时间、人工分析时间,以及它们在标记恶意应用程序时的准确性。通过下推分析,我们发现时间的减少具有统计学意义(p < 0.05):人加机器分析时间从每个应用的85分钟减少到每个应用的35分钟;下推式分析仪的准确率从71%提高到95%,具有统计学意义(p < 0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sound and precise malware analysis for android via pushdown reachability and entry-point saturation Deadbolt: locking down android disk encryption Secure enrollment and practical migration for mobile trusted execution environments Passwords and interfaces: towards creating stronger passwords by using mobile phone handsets Please slow down!: the impact on tor performance from mobility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1