A Comparative Mention-Pair Models for Coreference Resolution in DARI Language for Information Extraction

Ghezal Ahmad Jan Zia, Ahmad Zia Sharifi, Fazl Ahmad Amini, Niaz Mohammad Ramaki
{"title":"A Comparative Mention-Pair Models for Coreference Resolution in DARI Language for Information Extraction","authors":"Ghezal Ahmad Jan Zia, Ahmad Zia Sharifi, Fazl Ahmad Amini, Niaz Mohammad Ramaki","doi":"10.5121/CSIT.2019.90708","DOIUrl":null,"url":null,"abstract":"Coreference resolution plays an important role in Information Extraction.This paper covers the investigation of two strategies based on a mention-pair resolver using Decision Tree classifier on structured and unstructured dataset, targeting coreference resolution in Dari language. Strategies are (1) training separate models which is specialized in particular categories (e.g., lexical, syntactic and semantic) and types of mentions (e.g. pronouns, proper nouns) and (2) using a structured dataset on a machine learning library that is designed to classify numerical values. Moreover, these modifications and comparative models describe a contribution of comprehensive factors involved in the resolution of texts. Specifically, we developed the first Dari corpus (’DariCoref’) based on OntoNotes and WikiCoref scheme. Both strategies are produced f-score of state-of-the-art.","PeriodicalId":383682,"journal":{"name":"8th International Conference on Soft Computing, Artificial Intelligence and Applications","volume":"129 13","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference on Soft Computing, Artificial Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/CSIT.2019.90708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coreference resolution plays an important role in Information Extraction.This paper covers the investigation of two strategies based on a mention-pair resolver using Decision Tree classifier on structured and unstructured dataset, targeting coreference resolution in Dari language. Strategies are (1) training separate models which is specialized in particular categories (e.g., lexical, syntactic and semantic) and types of mentions (e.g. pronouns, proper nouns) and (2) using a structured dataset on a machine learning library that is designed to classify numerical values. Moreover, these modifications and comparative models describe a contribution of comprehensive factors involved in the resolution of texts. Specifically, we developed the first Dari corpus (’DariCoref’) based on OntoNotes and WikiCoref scheme. Both strategies are produced f-score of state-of-the-art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向信息抽取的DARI语言共引用解析的比较提及对模型
共同参考解析在信息提取中起着重要的作用。本文研究了在结构化和非结构化数据集上使用决策树分类器的两种基于提及对解析器的策略,目标是在Dari语言中进行共同引用解析。策略是:(1)训练专门针对特定类别(例如,词汇,句法和语义)和提及类型(例如代词,专有名词)的单独模型;(2)在机器学习库上使用结构化数据集,用于对数值进行分类。此外,这些修改和比较模型描述了文本解析中涉及的综合因素的贡献。具体来说,我们基于OntoNotes和WikiCoref方案开发了第一个Dari语料库(' DariCoref ')。两种策略都产生了最先进的f分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HMM-Based Dari Named Entity Recognition for Information Extraction An Approach to Tracking Problem for Linear Control System Via Invariant Ellipsoids Method A Comparative Mention-Pair Models for Coreference Resolution in DARI Language for Information Extraction A Machine Learning Algorithm in Automated Text Categorization of Legacy Archives Vulnerability Analysis of IP Cameras Using ARP Poisoning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1