Pandemic rumor identification on social networking sites: A case study of COVID-19

Mohsan Ali, Iqbal Murtza, A. Ejaz
{"title":"Pandemic rumor identification on social networking sites: A case study of COVID-19","authors":"Mohsan Ali, Iqbal Murtza, A. Ejaz","doi":"10.1145/3508230.3508246","DOIUrl":null,"url":null,"abstract":"Digital Rumors, because of the ease and innovations in social networking technologies, has become an important issue. These rumors become a critical issue in a disaster, epidemic, or pandemic. Considering classification power of conventional and deep learning techniques, we propose a hybrid learning technique that identifies rumors effectively. For this, TF-IDF description has been used to build a stack of multiple conventional learning techniques; logistic regression, Naïve Bayes, and random forest. Whereas, word-embedding features have been used for purpose of deep learning; LSTM and LSTM-RNN. The combination of LSTM and RNN makes this study unique in the field of rumor detection. With LSTM and RNN gated architectures, huge series rumor tweets may be efficiently managed. To aggregate the decisions, the labels of deep learning and the stack of conventional learning have been combined using majority voting based ensemble classification. To evaluate the performance of the proposed technique, we used publically available standard COVID-19 RUMOR dataset. The proposed technique obtains 99.02% accuracy, which shows its effectiveness. The dataset utilized and the ensemble model created for rumor identification distinguish our work from existing methods.","PeriodicalId":252146,"journal":{"name":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508230.3508246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital Rumors, because of the ease and innovations in social networking technologies, has become an important issue. These rumors become a critical issue in a disaster, epidemic, or pandemic. Considering classification power of conventional and deep learning techniques, we propose a hybrid learning technique that identifies rumors effectively. For this, TF-IDF description has been used to build a stack of multiple conventional learning techniques; logistic regression, Naïve Bayes, and random forest. Whereas, word-embedding features have been used for purpose of deep learning; LSTM and LSTM-RNN. The combination of LSTM and RNN makes this study unique in the field of rumor detection. With LSTM and RNN gated architectures, huge series rumor tweets may be efficiently managed. To aggregate the decisions, the labels of deep learning and the stack of conventional learning have been combined using majority voting based ensemble classification. To evaluate the performance of the proposed technique, we used publically available standard COVID-19 RUMOR dataset. The proposed technique obtains 99.02% accuracy, which shows its effectiveness. The dataset utilized and the ensemble model created for rumor identification distinguish our work from existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交网站大流行谣言识别:以COVID-19为例
由于社交网络技术的易用性和创新性,数字谣言已经成为一个重要的问题。这些谣言在灾难、流行病或大流行中成为一个关键问题。考虑到传统学习技术和深度学习技术的分类能力,我们提出了一种有效识别谣言的混合学习技术。为此,TF-IDF描述已被用于构建多种传统学习技术的堆栈;逻辑回归,Naïve贝叶斯和随机森林。然而,词嵌入特征已被用于深度学习;LSTM和LSTM- rnn。LSTM和RNN的结合使得本研究在谣言检测领域独树一帜。利用LSTM和RNN的门控架构,可以有效地管理大量的系列谣言推文。为了聚合决策,使用基于多数投票的集成分类将深度学习的标签和传统学习的堆栈结合起来。为了评估所提出技术的性能,我们使用了公开可用的标准COVID-19 RUMOR数据集。该方法的准确率达到99.02%,证明了其有效性。所使用的数据集和为谣言识别创建的集成模型将我们的工作与现有方法区分开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pandemic rumor identification on social networking sites: A case study of COVID-19 Research on Domain Emotion Dictionary Construction Method based on Improved SO-PMI Algorithm Topic Segmentation for Interview Dialogue System Method of Graphical User Interface Adaptation Using Reinforcement Learning and Automated Testing Prediction of Number of Likes and Retweets based on the Features of Tweet Text and Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1