An improved chirp group delay based algorithm for estimating the vocal tract response

M. Jayesh, C. S. Ramalingam
{"title":"An improved chirp group delay based algorithm for estimating the vocal tract response","authors":"M. Jayesh, C. S. Ramalingam","doi":"10.5281/ZENODO.54522","DOIUrl":null,"url":null,"abstract":"We propose a method for vocal tract estimation that is better than Bozkurt's chirp group delay method [1] and its zero-phase variant [2]. The chirp group delay method works only for voiced speech, is critically dependent on finding the glottal closure instants (GCI), deteriorates in performance when more than two pitch cycles are included for analysis, and does not work for unvoiced speech. The zero-phase variant eliminates these drawbacks but works poorly for nasal sounds. In our proposed method all outside-unit-circle zeros are reflected inside before computing the chirp group delay. The advantages are: (a) GCI knowledge not required, (b) the vocal tract estimate is far less sensitive to the location and duration of the analysis window, (c) works for unvoiced sounds, and (d) captures the spectral valleys well for nasals, which in turn leads to better recognition accuracy.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.54522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a method for vocal tract estimation that is better than Bozkurt's chirp group delay method [1] and its zero-phase variant [2]. The chirp group delay method works only for voiced speech, is critically dependent on finding the glottal closure instants (GCI), deteriorates in performance when more than two pitch cycles are included for analysis, and does not work for unvoiced speech. The zero-phase variant eliminates these drawbacks but works poorly for nasal sounds. In our proposed method all outside-unit-circle zeros are reflected inside before computing the chirp group delay. The advantages are: (a) GCI knowledge not required, (b) the vocal tract estimate is far less sensitive to the location and duration of the analysis window, (c) works for unvoiced sounds, and (d) captures the spectral valleys well for nasals, which in turn leads to better recognition accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进啁啾群延迟的声道响应估计算法
我们提出了一种优于Bozkurt啁啾群延迟法[1]及其零相位变体[2]的声道估计方法。啁啾群延迟方法仅适用于发声语音,严重依赖于找到声门关闭瞬间(GCI),当包括两个以上的音高周期进行分析时,性能会恶化,并且不适用于非发声语音。零相位变体消除了这些缺点,但对于鼻音效果不佳。在我们提出的方法中,在计算啁啾群延迟之前,所有单位圆外的零都在内部反射。其优点是:(a)不需要GCI知识,(b)声道估计对分析窗口的位置和持续时间的敏感性要低得多,(c)适用于不发音的声音,(d)可以很好地捕获鼻音的频谱谷,从而提高识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved chirp group delay based algorithm for estimating the vocal tract response Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion Adaptive waveform selection and target tracking by wideband multistatic radar/sonar systems Exploiting time and frequency information for Delay/Doppler altimetry Merging extremum seeking and self-optimizing narrowband interference canceller - overdetermined case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1