Recognizing 3D Orientation of a Two-RFID-Tag Labeled Object in Multipath Environments Using Deep Transfer Learning

Zhong-qin Wang, Min Xu, Fu Xiao
{"title":"Recognizing 3D Orientation of a Two-RFID-Tag Labeled Object in Multipath Environments Using Deep Transfer Learning","authors":"Zhong-qin Wang, Min Xu, Fu Xiao","doi":"10.1109/ICDCS51616.2021.00068","DOIUrl":null,"url":null,"abstract":"State-of-the-art battery-free RFID systems attach multiple RFID tags to an object and exploit their RF phase to estimate its three-dimensional (3D) orientation. However, the measured RF phase may be inaccurate because each tag's signal fingerprint (i.e., RSSI and RF Phase) is distorted by multipath interference and electromagnetic interaction between neighboring tags. In this paper, we propose RF-Orien3D that minimizes these interferences for accurate 3D orientation recognition only using two RFID tags. The electromagnet interference modifies the radiation pattern and modulation factor of each tag in the two-element tag array, which can be estimated to compensate for the distortion in RFID fingerprints. To deal with the multipath impact, we simulate multipath noise to generate huge amounts of RFID fingerprints and use them to pre-train a convolutional neural network (CNN). Then we only collect dozens of actual samples to fine-tune the CNN for multipath-tolerant orientation recognition. The experiments show RF-Orien3D recognizes a two-tag labeled object's 2D orientation with the angular error of about 16° and its 3D orientation (azimuth and elevation) with the errors of about 29° and 11° in low/rich multipath scenarios.","PeriodicalId":222376,"journal":{"name":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS51616.2021.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

State-of-the-art battery-free RFID systems attach multiple RFID tags to an object and exploit their RF phase to estimate its three-dimensional (3D) orientation. However, the measured RF phase may be inaccurate because each tag's signal fingerprint (i.e., RSSI and RF Phase) is distorted by multipath interference and electromagnetic interaction between neighboring tags. In this paper, we propose RF-Orien3D that minimizes these interferences for accurate 3D orientation recognition only using two RFID tags. The electromagnet interference modifies the radiation pattern and modulation factor of each tag in the two-element tag array, which can be estimated to compensate for the distortion in RFID fingerprints. To deal with the multipath impact, we simulate multipath noise to generate huge amounts of RFID fingerprints and use them to pre-train a convolutional neural network (CNN). Then we only collect dozens of actual samples to fine-tune the CNN for multipath-tolerant orientation recognition. The experiments show RF-Orien3D recognizes a two-tag labeled object's 2D orientation with the angular error of about 16° and its 3D orientation (azimuth and elevation) with the errors of about 29° and 11° in low/rich multipath scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度迁移学习的多路径环境下双rfid标签物体三维方向识别
最先进的无电池RFID系统将多个RFID标签附加到一个物体上,并利用其射频相位来估计其三维(3D)方向。然而,由于每个标签的信号指纹(即RSSI和RF相位)受到多径干扰和相邻标签之间的电磁相互作用的扭曲,因此测量的RF相位可能不准确。在本文中,我们提出了RF-Orien3D,仅使用两个RFID标签就可以最大限度地减少这些干扰,从而实现准确的3D方向识别。电磁干扰改变了二元标签阵列中每个标签的辐射方向图和调制因子,可以估计出这些因子来补偿RFID指纹中的畸变。为了处理多径影响,我们模拟多径噪声来产生大量的RFID指纹,并使用它们来预训练卷积神经网络(CNN)。然后我们只收集几十个实际样本来微调CNN进行多路径容错方向识别。实验表明,在低/富多径场景下,RF-Orien3D识别双标签物体的二维方向角误差约为16°,三维方向(方位角和仰角)误差约为29°和11°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Practical Location Privacy Attacks and Defense on Point-of-interest Aggregates Hand-Key: Leveraging Multiple Hand Biometrics for Attack-Resilient User Authentication Using COTS RFID Recognizing 3D Orientation of a Two-RFID-Tag Labeled Object in Multipath Environments Using Deep Transfer Learning The Vertical Cuckoo Filters: A Family of Insertion-friendly Sketches for Online Applications Dyconits: Scaling Minecraft-like Services through Dynamically Managed Inconsistency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1