Convergence-Time Analysis for the HTE Link Quality Estimator

Lucas M. A. de Souza, C. Albuquerque, Fernanda G. O. Passos, Diego G. Passos
{"title":"Convergence-Time Analysis for the HTE Link Quality Estimator","authors":"Lucas M. A. de Souza, C. Albuquerque, Fernanda G. O. Passos, Diego G. Passos","doi":"10.1109/ISCC55528.2022.9912892","DOIUrl":null,"url":null,"abstract":"Evaluating wireless links is a common task for many control mechanisms. However, the inherent variability of those estimates negatively impacts network performance. To reduce this variability, the Hypothesis Test Estimator (HTE) was recently developed as an alternative to the commonly employed moving averages. Performance analyses carried out in recent works found that HTE returns more stable estimates at the cost of a typically larger average estimate error. This work uses numerical simulations to complement the previous analyses, but now under the perspective of convergence time –i.e., how long it takes for actual changes in the link quality to be reflected in the estimates. Our results indicate that HTE has, in general, a better convergence time than the moving averages. They also show that further improving HTE's convergence time is not trivial, as simple variations of the method that aim to improve convergence do not result in significant gains.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evaluating wireless links is a common task for many control mechanisms. However, the inherent variability of those estimates negatively impacts network performance. To reduce this variability, the Hypothesis Test Estimator (HTE) was recently developed as an alternative to the commonly employed moving averages. Performance analyses carried out in recent works found that HTE returns more stable estimates at the cost of a typically larger average estimate error. This work uses numerical simulations to complement the previous analyses, but now under the perspective of convergence time –i.e., how long it takes for actual changes in the link quality to be reflected in the estimates. Our results indicate that HTE has, in general, a better convergence time than the moving averages. They also show that further improving HTE's convergence time is not trivial, as simple variations of the method that aim to improve convergence do not result in significant gains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HTE链路质量估计器的收敛时间分析
评估无线链路是许多控制机制的共同任务。然而,这些估计的固有可变性会对网络性能产生负面影响。为了减少这种可变性,假设检验估计器(HTE)最近被开发为常用移动平均的替代方法。在最近的工作中进行的性能分析发现,HTE以通常较大的平均估计误差为代价返回更稳定的估计。这项工作使用数值模拟来补充之前的分析,但现在从收敛时间的角度来看-即。,链接质量的实际变化需要多长时间才能反映在估计中。我们的结果表明,一般来说,HTE比移动平均具有更好的收敛时间。他们还表明,进一步提高HTE的收敛时间并不是微不足道的,因为旨在提高收敛性的方法的简单变化不会带来显著的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convergence-Time Analysis for the HTE Link Quality Estimator OCVC: An Overlapping-Enabled Cooperative Computing Protocol in Vehicular Fog Computing Non-Contact Heart Rate Signal Extraction and Identification Based on Speckle Image Active Eavesdroppers Detection System in Multi-hop Wireless Sensor Networks A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1