Esraa M Adel, Rana Magdy, Sara Mohamed, Mona Mamdouh, Eman El Mandouh, H. Mostafa
{"title":"Accelerating Deep Neural Networks Using FPGA","authors":"Esraa M Adel, Rana Magdy, Sara Mohamed, Mona Mamdouh, Eman El Mandouh, H. Mostafa","doi":"10.1109/ICM.2018.8704085","DOIUrl":null,"url":null,"abstract":"Deep Convolutional Neural Networks (CNNs) are the state-of-the-art systems for image classification and scene understating. They are widely used for their superior accuracy but at the cost of high computational complexity. The target in this field nowadays is its acceleration to be used in real time applications. The solution is to use Graphics Processing Units (GPU) but many problems arise due to the GPU high-power consumption which prevents its utilization in daily-used equipment. The Field Programmable Gate Array (FPGA) is a new solution for CNN implementations due to its low power consumption and flexible architecture. This work discusses this problem and provides a solution that compromises between the speed of the CNN and the power consumption of the FPGA. This solution depends on two main techniques for speeding up: parallelism of layers resources and pipelining inside some layers","PeriodicalId":305356,"journal":{"name":"2018 30th International Conference on Microelectronics (ICM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2018.8704085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Deep Convolutional Neural Networks (CNNs) are the state-of-the-art systems for image classification and scene understating. They are widely used for their superior accuracy but at the cost of high computational complexity. The target in this field nowadays is its acceleration to be used in real time applications. The solution is to use Graphics Processing Units (GPU) but many problems arise due to the GPU high-power consumption which prevents its utilization in daily-used equipment. The Field Programmable Gate Array (FPGA) is a new solution for CNN implementations due to its low power consumption and flexible architecture. This work discusses this problem and provides a solution that compromises between the speed of the CNN and the power consumption of the FPGA. This solution depends on two main techniques for speeding up: parallelism of layers resources and pipelining inside some layers