Accent Identification of Ethnically Diverse Nigerian English Speakers

Francisca O. Oladipo, Rahmon A Habeeb, A. Musa
{"title":"Accent Identification of Ethnically Diverse Nigerian English Speakers","authors":"Francisca O. Oladipo, Rahmon A Habeeb, A. Musa","doi":"10.2139/ssrn.3666815","DOIUrl":null,"url":null,"abstract":"It is imperative to improve the speech recognition system as human-machine interfaces are advancing in the growing global market of technologies. There are quite a number of Nigerian English speakers’ accents to which the speech recognition systems are not sufficiently exposed. Accents may suggest a lot of information about someone’s whereabouts, for example, their native language, place of origin, or ethnic groups and accent classification. Given the importance of accents, efficiency and accuracy of speech recognition systems can be improved with training data of diverse accents. This research provides support for accent-dependent automatic speech recognition by deploying a supervised learning algorithm to the task of recognizing three Nigerian ethnic groups (Yoruba, Igbo, and Hausa) and distinguish them based on their accents by constructing sequential Mel-Frequency Cepstral Coefficients (MFCC) features from the frames of the audio sample. Our results show that concatenating the MFCC features sequentially and applying a supervised learning technique to provide a solution to the problem of identifying and classifying accents works efficiently and accurately.","PeriodicalId":102139,"journal":{"name":"Other Topics Engineering Research eJournal","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Other Topics Engineering Research eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3666815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

It is imperative to improve the speech recognition system as human-machine interfaces are advancing in the growing global market of technologies. There are quite a number of Nigerian English speakers’ accents to which the speech recognition systems are not sufficiently exposed. Accents may suggest a lot of information about someone’s whereabouts, for example, their native language, place of origin, or ethnic groups and accent classification. Given the importance of accents, efficiency and accuracy of speech recognition systems can be improved with training data of diverse accents. This research provides support for accent-dependent automatic speech recognition by deploying a supervised learning algorithm to the task of recognizing three Nigerian ethnic groups (Yoruba, Igbo, and Hausa) and distinguish them based on their accents by constructing sequential Mel-Frequency Cepstral Coefficients (MFCC) features from the frames of the audio sample. Our results show that concatenating the MFCC features sequentially and applying a supervised learning technique to provide a solution to the problem of identifying and classifying accents works efficiently and accurately.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同种族尼日利亚英语使用者的口音识别
随着人机界面在全球技术市场的不断发展,语音识别系统的改进势在必行。有相当多的尼日利亚英语使用者的口音,语音识别系统没有充分暴露。口音可能暗示了很多关于一个人的行踪的信息,例如,他们的母语,原籍地,或种族群体和口音分类。考虑到口音的重要性,使用不同口音的训练数据可以提高语音识别系统的效率和准确性。本研究通过部署监督学习算法来识别三个尼日利亚民族(约鲁巴族、伊博族和豪萨族)的任务,并通过从音频样本的帧中构建顺序Mel-Frequency Cepstral系数(MFCC)特征来区分他们的口音,从而为口音依赖的自动语音识别提供支持。我们的研究结果表明,顺序连接MFCC特征并应用监督学习技术来解决口音识别和分类问题是有效和准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Information Sharing on Bullwhip Effect in a Non-Serial Supply Chain with Stochastic Lead Time On the Problem of the Specific Frequency of Globular Clusters A Polynomial Least Squares Multiple-Model Estimator: Simple, Optimal, Adaptive, and Practical Predicting and Improving Hydraulic Performance of Pumping Suction Intakes By Computational Fluid Dynamics (CFD) Heptamethine and Nonamethine Cyanine Dyes: Novel Synthetic Strategy, Electronic Transitions, Solvatochromic and Halochromic Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1