Residual Value Prediction

Huayi Jing, Xinfeng Ye, S. Manoharan
{"title":"Residual Value Prediction","authors":"Huayi Jing, Xinfeng Ye, S. Manoharan","doi":"10.1109/ICOCO56118.2022.10031995","DOIUrl":null,"url":null,"abstract":"Car leasing is an important business sector. The residual value is the value of the car at the end of the lease. The residual value determines the monthly payment in a car leasing contract. Predicting the residual value of a car accurately is important for the car leasing company. In this paper, we investigate using machine learning techniques to carry out residual value prediction. We developed seven residual value prediction models using Lasso Regression, Decision Tree, Random Forest, Light GBM, XGBoost, CatBoost and Neural Network. We evaluated and compared the performance of these models using the data collected from a financial service company in New Zealand. Our experience show that the model based on CatBoost achieves the best accuracy in terms of mean absolute error and mean absolute percentage error. Compared with the method currently used by the financial service company, the CatBoost-based model reduces the prediction error by 50%.","PeriodicalId":319652,"journal":{"name":"2022 IEEE International Conference on Computing (ICOCO)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Computing (ICOCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCO56118.2022.10031995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Car leasing is an important business sector. The residual value is the value of the car at the end of the lease. The residual value determines the monthly payment in a car leasing contract. Predicting the residual value of a car accurately is important for the car leasing company. In this paper, we investigate using machine learning techniques to carry out residual value prediction. We developed seven residual value prediction models using Lasso Regression, Decision Tree, Random Forest, Light GBM, XGBoost, CatBoost and Neural Network. We evaluated and compared the performance of these models using the data collected from a financial service company in New Zealand. Our experience show that the model based on CatBoost achieves the best accuracy in terms of mean absolute error and mean absolute percentage error. Compared with the method currently used by the financial service company, the CatBoost-based model reduces the prediction error by 50%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
残值预测
汽车租赁是一个重要的商业部门。残值是汽车在租期结束时的价值。残值决定了汽车租赁合同中的月付款。对汽车租赁公司来说,准确预测汽车的残值是很重要的。在本文中,我们研究使用机器学习技术来进行残值预测。我们利用Lasso回归、决策树、随机森林、Light GBM、XGBoost、CatBoost和神经网络建立了7个残值预测模型。我们使用从新西兰一家金融服务公司收集的数据来评估和比较这些模型的性能。我们的经验表明,基于CatBoost的模型在平均绝对误差和平均绝对百分比误差方面达到了最好的精度。与金融服务公司目前使用的方法相比,基于catboost的模型将预测误差降低了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preliminary Study on the Effect of Traffic Representation on Accuracy Degradation in Machine Learning-based IoT Device Identification Residual Value Prediction A Framework for Supporting Deaf and Mute Learning Experience Through Extended Reality A Comparative Study of Monolithic and Microservices Architectures in Machine Learning Scenarios Salient feature extraction using Attention for Brain Tumor segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1