Automatic tuning of a graph-based image segmentation method for digital mammography applications

Hirotaka Susukida, Fei Ma, M. Bajger
{"title":"Automatic tuning of a graph-based image segmentation method for digital mammography applications","authors":"Hirotaka Susukida, Fei Ma, M. Bajger","doi":"10.1109/ISBI.2008.4540939","DOIUrl":null,"url":null,"abstract":"Mammogram segmentation tasks underpin a wide range of registration, temporal analysis and detection algorithms. Unfortunately, finding an accurate, robust and efficient segmentation still remains a challenging problem in mammography. A recent segmentation technique, based on minimum spanning trees (MST segmentation), is known to be robust to typical mammogram distortions and computationally efficient. This method captures both local and global image information but the balance requires choosing a parameter. So far no automatic procedure to estimate this parameter has been proposed and the value was determined experimentally. In this paper a segmentation evaluation criterion, based on a measure of image entropy, is used to automatically optimize the granularity of an MST-based segmentation. The method is tested on a set of 82 random images taken from a commonly used mammogram database. The results show a dramatic improvement in the accuracy of a MST segmentation tuned up using the entropy-based criterion.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4540939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Mammogram segmentation tasks underpin a wide range of registration, temporal analysis and detection algorithms. Unfortunately, finding an accurate, robust and efficient segmentation still remains a challenging problem in mammography. A recent segmentation technique, based on minimum spanning trees (MST segmentation), is known to be robust to typical mammogram distortions and computationally efficient. This method captures both local and global image information but the balance requires choosing a parameter. So far no automatic procedure to estimate this parameter has been proposed and the value was determined experimentally. In this paper a segmentation evaluation criterion, based on a measure of image entropy, is used to automatically optimize the granularity of an MST-based segmentation. The method is tested on a set of 82 random images taken from a commonly used mammogram database. The results show a dramatic improvement in the accuracy of a MST segmentation tuned up using the entropy-based criterion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字乳腺摄影应用中基于图形的图像分割方法的自动调整
乳房x光片分割任务支持广泛的配准,时间分析和检测算法。不幸的是,找到一个准确,稳健和有效的分割仍然是乳房x光检查的一个具有挑战性的问题。最近的一种基于最小生成树(MST分割)的分割技术被认为对典型的乳房x线照片失真具有鲁棒性和计算效率。该方法同时捕获局部和全局图像信息,但平衡需要选择一个参数。到目前为止,还没有提出自动估计该参数的程序,其值是通过实验确定的。本文提出了一种基于图像熵度量的分割评价准则,用于自动优化基于mst的分割粒度。该方法在一组82张随机图像上进行了测试,这些图像取自一个常用的乳房x光检查数据库。结果表明,使用基于熵的标准调整后的MST分割的准确性有了显着的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1