Vehicle detector training with labels derived from background subtraction algorithms in video surveillance

Sebastian Cygert, A. Czyżewski
{"title":"Vehicle detector training with labels derived from background subtraction algorithms in video surveillance","authors":"Sebastian Cygert, A. Czyżewski","doi":"10.23919/SPA.2018.8563368","DOIUrl":null,"url":null,"abstract":"Vehicle detection in video from a miniature stationary closed-circuit television (CCTV) camera is discussed in the paper. The camera provides one of components of the intelligent road sign developed in the project concerning the traffic control with the use of autonomous devices being developed. Modern Convolutional Neural Network (CNN) based detectors need big data input, usually demanding their manual labeling. In the presented research approach the weakly-supervised learning paradigm is used for the training of a CNN based detector employing labels obtained automatically through an application of video background subtraction algorithm. The proposed method is evaluated on GRAM-RTM dataset and a CNN fine-tuned with labels from the background subtraction algorithm. Even though obtained representation in the form of labels may include many false positives and negatives, a reliable vehicle detector was trained employing them. The results are presented showing that such a method can be applied to traffic surveillance systems.","PeriodicalId":265587,"journal":{"name":"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SPA.2018.8563368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Vehicle detection in video from a miniature stationary closed-circuit television (CCTV) camera is discussed in the paper. The camera provides one of components of the intelligent road sign developed in the project concerning the traffic control with the use of autonomous devices being developed. Modern Convolutional Neural Network (CNN) based detectors need big data input, usually demanding their manual labeling. In the presented research approach the weakly-supervised learning paradigm is used for the training of a CNN based detector employing labels obtained automatically through an application of video background subtraction algorithm. The proposed method is evaluated on GRAM-RTM dataset and a CNN fine-tuned with labels from the background subtraction algorithm. Even though obtained representation in the form of labels may include many false positives and negatives, a reliable vehicle detector was trained employing them. The results are presented showing that such a method can be applied to traffic surveillance systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于背景减法算法的车辆检测器训练
本文讨论了微型固定闭路电视(CCTV)摄像机视频中的车辆检测问题。摄像头是该项目开发的智能道路标志的组成部分之一,该项目涉及使用正在开发的自主设备进行交通控制。现代基于卷积神经网络(CNN)的检测器需要大数据输入,通常需要人工标注。在本文的研究方法中,使用弱监督学习范式来训练基于CNN的检测器,该检测器使用通过应用视频背景减法算法自动获得的标签。该方法在GRAM-RTM数据集和CNN上进行了评估,CNN使用背景减法算法的标签进行了微调。尽管以标签的形式获得的表示可能包括许多假阳性和假阴性,但使用它们训练了一个可靠的车辆检测器。结果表明,该方法可以应用于交通监控系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vehicle detector training with labels derived from background subtraction algorithms in video surveillance Automatic 3D segmentation of MRI data for detection of head and neck cancerous lymph nodes Centerline-Radius Polygonal-Mesh Modeling of Bifurcated Blood Vessels in 3D Images using Conformal Mapping Active elimination of tonal components in acoustic signals An adaptive transmission algorithm for an inertial motion capture system in the aspect of energy saving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1