Using mutual information for fuzzy decision tree generation

Hua Li, Gui-Wen Lv, Sumei Zhang, Zhicaho Guo
{"title":"Using mutual information for fuzzy decision tree generation","authors":"Hua Li, Gui-Wen Lv, Sumei Zhang, Zhicaho Guo","doi":"10.1109/ICMLC.2010.5581043","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed an extended heuristic algorithm to Fuzzy ID3 using the minimization information entropy and mutual information entropy. Most of the current fuzzy decision trees learning algorithms often select the previously selected attributes for branching. The repeated selection limits the accuracy of training and testing and the structure of decision trees may become complex. Here, we use mutual information to avoid selecting the redundancy attributes in the generation of fuzzy decision tree. The test results show that this method can obtain good performance.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5581043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we proposed an extended heuristic algorithm to Fuzzy ID3 using the minimization information entropy and mutual information entropy. Most of the current fuzzy decision trees learning algorithms often select the previously selected attributes for branching. The repeated selection limits the accuracy of training and testing and the structure of decision trees may become complex. Here, we use mutual information to avoid selecting the redundancy attributes in the generation of fuzzy decision tree. The test results show that this method can obtain good performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用互信息进行模糊决策树生成
本文提出了一种基于信息熵和互信息熵的模糊ID3扩展启发式算法。目前大多数模糊决策树学习算法往往选择先前选择的属性进行分支。重复选择限制了训练和测试的准确性,并且决策树的结构可能变得复杂。在模糊决策树的生成过程中,我们利用互信息来避免冗余属性的选择。试验结果表明,该方法可以获得良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Does joint decoding really outperform cascade processing in English-to-Chinese transliteration generation? The role of syllabification The design of energy-saving filtering mechanism for sensor networks Feature-based approach combined with hierarchical classifying strategy to relation extraction The comparative study of different Bayesian classifier models New inverse halftoning using texture-and lookup table-based learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1