Evaluating Human Understanding of a Mixed Reality Interface for Autonomous Robot-Based Change Detection

Christopher M. Reardon, Kerstin S Haring, J. Gregory, J. Rogers
{"title":"Evaluating Human Understanding of a Mixed Reality Interface for Autonomous Robot-Based Change Detection","authors":"Christopher M. Reardon, Kerstin S Haring, J. Gregory, J. Rogers","doi":"10.1109/SSRR53300.2021.9597854","DOIUrl":null,"url":null,"abstract":"Online change detection performed by mobile robots has incredible potential to impact safety and security applications. While robots are superior to humans at detecting changes, humans are still better at interpreting this information and will be responsible for making critical decisions in these contexts. For these reasons, robot-to-human communication of change detection is a fundamental requirement for successful human-robot teams operating in such scenarios. In this work we seek to improve this communication, and present the results of a study that evaluates the interpretability of autonomous robot-based change detections conveyed via mixed reality to untrained human participants. Our results show that humans are able to identify changes and understand the visualizations employed without prior training. Our analysis of the limitations of this initial study should be constructive to future work in this domain.","PeriodicalId":423263,"journal":{"name":"2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR53300.2021.9597854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Online change detection performed by mobile robots has incredible potential to impact safety and security applications. While robots are superior to humans at detecting changes, humans are still better at interpreting this information and will be responsible for making critical decisions in these contexts. For these reasons, robot-to-human communication of change detection is a fundamental requirement for successful human-robot teams operating in such scenarios. In this work we seek to improve this communication, and present the results of a study that evaluates the interpretability of autonomous robot-based change detections conveyed via mixed reality to untrained human participants. Our results show that humans are able to identify changes and understand the visualizations employed without prior training. Our analysis of the limitations of this initial study should be constructive to future work in this domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估人类对基于自主机器人的变化检测的混合现实界面的理解
由移动机器人执行的在线变化检测具有影响安全和安保应用的不可思议的潜力。虽然机器人在检测变化方面优于人类,但人类仍然更擅长解释这些信息,并将负责在这些环境中做出关键决策。由于这些原因,变更检测的机器人与人类之间的交流是在这种情况下成功操作人机团队的基本要求。在这项工作中,我们寻求改善这种沟通,并提出了一项研究的结果,该研究评估了通过混合现实向未经训练的人类参与者传达的基于自主机器人的变化检测的可解释性。我们的研究结果表明,人类能够识别变化,并在没有事先训练的情况下理解所采用的可视化。我们对这一初步研究的局限性的分析应该对这一领域的未来工作具有建设性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Human Understanding of a Mixed Reality Interface for Autonomous Robot-Based Change Detection MPDrone: FPGA-based Platform for Intelligent Real-time Autonomous Drone Operations Vision-based UAV Detection for Air-to-Air Neutralization A Shared Autonomy Surface Disinfection System Using a Mobile Manipulator Robot A Soft Drone with Multi-modal Mobility for the Exploration of Confined Spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1