An End-to-end Image Feature Representation Model of Pulmonary Nodules

Jinqiao Hu
{"title":"An End-to-end Image Feature Representation Model of Pulmonary Nodules","authors":"Jinqiao Hu","doi":"10.1109/CISP-BMEI56279.2022.9980061","DOIUrl":null,"url":null,"abstract":"Lung cancer is a cancer with a high mortality rate. If lung cancer can be detected early, the mortality rate can be greatly reduced. Lung nodule detection based on CT or MRI equipment is a common method to detect early lung cancer. Computer vision technology is widely used for image processing and classification of pulmonary nodules, but because the distinction between pulmonary nodule areas and surrounding non-nodule areas is not obvious, general image processing methods can only extract the superficial features of the image in pulmonary nodules. The detection accuracy cannot be further improved. In this paper, we propose an end-to-end model for constructing feature representations for lung nodule image classification based on local and global features. First, local plaque regions are selected and associated with relatively intact tissue, and then local and global features are extracted from each region. Deep models represent features that implement high-level abstract representations that describe image objects. The test results on standard datasets show that the method proposed in this paper has advantages on some evaluation metrics.","PeriodicalId":198522,"journal":{"name":"2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"25 S2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI56279.2022.9980061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer is a cancer with a high mortality rate. If lung cancer can be detected early, the mortality rate can be greatly reduced. Lung nodule detection based on CT or MRI equipment is a common method to detect early lung cancer. Computer vision technology is widely used for image processing and classification of pulmonary nodules, but because the distinction between pulmonary nodule areas and surrounding non-nodule areas is not obvious, general image processing methods can only extract the superficial features of the image in pulmonary nodules. The detection accuracy cannot be further improved. In this paper, we propose an end-to-end model for constructing feature representations for lung nodule image classification based on local and global features. First, local plaque regions are selected and associated with relatively intact tissue, and then local and global features are extracted from each region. Deep models represent features that implement high-level abstract representations that describe image objects. The test results on standard datasets show that the method proposed in this paper has advantages on some evaluation metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肺结节端到端的图像特征表示模型
肺癌是一种死亡率很高的癌症。如果能及早发现肺癌,可以大大降低死亡率。基于CT或MRI设备的肺结节检测是早期肺癌检测的常用方法。计算机视觉技术被广泛用于肺结节的图像处理和分类,但由于肺结节区域与周围非结节区域的区别不明显,一般的图像处理方法只能提取肺结节中图像的表面特征。检测精度无法进一步提高。本文提出了一种基于局部和全局特征构建肺结节图像分类特征表示的端到端模型。首先,选择局部斑块区域并与相对完整的组织相关联,然后从每个区域提取局部和全局特征。深度模型表示实现描述图像对象的高级抽象表示的特征。在标准数据集上的测试结果表明,本文提出的方法在某些评价指标上具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Point Cloud Registration based Track Correlation Method An End-to-end Image Feature Representation Model of Pulmonary Nodules Vision-Guided Speaker Embedding Based Speech Separation Analysis and Simulation of Interference Effects on CSK Modulation Systems Sentiment Analysis Based On Deep Residual Bidirectional Gated Recurrent Unit Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1