{"title":"Application of Artificial Neural Network to Estimate Students Performance in Scholastic Assessment Test","authors":"Shatha Al Ghazali, Saad Harous, S. Turaev","doi":"10.1109/CICN56167.2022.10008315","DOIUrl":null,"url":null,"abstract":"The applications of artificial intelligence in education became a very attractive topic especially during the COVID-19 pandemic due to the high level of uncertainty surrounded the decision making process within the educational institutions. The objective of this study is to create a model that is able to predict the student's score in the SAT test based on the student's performance in the internal assessments of the school and other demographic attributes. The sample includes 37 students of both genders from a private school in the United Arab Emirates (UAE). The findings suggest that it is possible to implement artificial neural networks to estimate the student's performance in the SAT exam based on internal school data. The model accuracy is 87.4 % however, some attributes can be identified as noise data and can be further removed to increase the accuracy. Scholastic Assessment Test Artificial Neural Network Machine learning Students performance.","PeriodicalId":287589,"journal":{"name":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"33 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN56167.2022.10008315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The applications of artificial intelligence in education became a very attractive topic especially during the COVID-19 pandemic due to the high level of uncertainty surrounded the decision making process within the educational institutions. The objective of this study is to create a model that is able to predict the student's score in the SAT test based on the student's performance in the internal assessments of the school and other demographic attributes. The sample includes 37 students of both genders from a private school in the United Arab Emirates (UAE). The findings suggest that it is possible to implement artificial neural networks to estimate the student's performance in the SAT exam based on internal school data. The model accuracy is 87.4 % however, some attributes can be identified as noise data and can be further removed to increase the accuracy. Scholastic Assessment Test Artificial Neural Network Machine learning Students performance.