Poster: MUSTARD - Adaptive Behavioral Analysis for Ransomware Detection

D. Sanvito, G. Siracusano, Roberto González, R. Bifulco
{"title":"Poster: MUSTARD - Adaptive Behavioral Analysis for Ransomware Detection","authors":"D. Sanvito, G. Siracusano, Roberto González, R. Bifulco","doi":"10.1145/3548606.3563529","DOIUrl":null,"url":null,"abstract":"Behavioural analysis based on filesystem operations is one of the most promising approaches for the detection of ransomware. Nonetheless, tracking all the operations on all the files for all the processes can introduce a significant overhead on the monitored system. We present MUSTARD, a solution to dynamically adapt the degree of monitoring for each process based on their behaviour to achieve a reduction of monitoring resources for the benign processes.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"17 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548606.3563529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Behavioural analysis based on filesystem operations is one of the most promising approaches for the detection of ransomware. Nonetheless, tracking all the operations on all the files for all the processes can introduce a significant overhead on the monitored system. We present MUSTARD, a solution to dynamically adapt the degree of monitoring for each process based on their behaviour to achieve a reduction of monitoring resources for the benign processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海报:MUSTARD -用于勒索软件检测的自适应行为分析
基于文件系统操作的行为分析是检测勒索软件最有前途的方法之一。尽管如此,跟踪所有进程的所有文件上的所有操作可能会给被监视的系统带来很大的开销。我们提出了MUSTARD,一种基于每个进程的行为动态调整监控程度的解决方案,以减少良性进程的监控资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
P-Verifier: Understanding and Mitigating Security Risks in Cloud-based IoT Access Policies When Frodo Flips: End-to-End Key Recovery on FrodoKEM via Rowhammer Poster: MUSTARD - Adaptive Behavioral Analysis for Ransomware Detection Poster: Fingerprint-Face Friction Based Earable Authentication A Run a Day Won't Keep the Hacker Away: Inference Attacks on Endpoint Privacy Zones in Fitness Tracking Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1