User-centric Trust-based Recommendation

Simon Meyffret, L. Médini, F. Laforest
{"title":"User-centric Trust-based Recommendation","authors":"Simon Meyffret, L. Médini, F. Laforest","doi":"10.1109/ITNG.2012.141","DOIUrl":null,"url":null,"abstract":"Recommender Systems are widely used to achieve a pre-selection of items among a constantly growing variety of items. Last generation of recommender systems take into account trust between users. In this article, we propose several trust-based recommendation formulas that keep centered around the end-user and thus restrict information sharing to the user vicinity. Our proposed RS does not need any global knowledge: it limits data exchange to trusted friendship relations. A comparison of the proposed recommendation formulas with more classical ones is finally proposed, based on two kinds of simulation.","PeriodicalId":117236,"journal":{"name":"2012 Ninth International Conference on Information Technology - New Generations","volume":"429 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth International Conference on Information Technology - New Generations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNG.2012.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recommender Systems are widely used to achieve a pre-selection of items among a constantly growing variety of items. Last generation of recommender systems take into account trust between users. In this article, we propose several trust-based recommendation formulas that keep centered around the end-user and thus restrict information sharing to the user vicinity. Our proposed RS does not need any global knowledge: it limits data exchange to trusted friendship relations. A comparison of the proposed recommendation formulas with more classical ones is finally proposed, based on two kinds of simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以用户为中心的基于信任的推荐
推荐系统被广泛用于在不断增长的各种项目中实现项目的预选。上一代的推荐系统考虑了用户之间的信任。在本文中,我们提出了几个基于信任的推荐公式,这些公式以最终用户为中心,从而将信息共享限制在用户附近。我们提出的RS不需要任何全局知识:它将数据交换限制在可信的友谊关系中。最后,通过两类仿真,将本文提出的推荐公式与经典推荐公式进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brain Imaging for Diagnosis of Schizophrenia: Challenges, Successes and a Research Road Map User-centric Trust-based Recommendation Do Videowikis on the Web Support Better (Constructivist) Learning in the Basics of Information Systems Science? An MDA-Based Approach for WS Composition Using UML Scenarios A Mobile Data Analysis Framework for Environmental Health Decision Support
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1