Automatic Selection of Parameters for Document Image Enhancement Using Image Quality Assessment

Ritu Garg, S. Chaudhury
{"title":"Automatic Selection of Parameters for Document Image Enhancement Using Image Quality Assessment","authors":"Ritu Garg, S. Chaudhury","doi":"10.1109/DAS.2016.53","DOIUrl":null,"url":null,"abstract":"Performance of most of the recognition engines for document images is effected by quality of the image being processed and the selection of parameter values for the pre-processing algorithm. Usually the choice of such parameters is done empirically. In this paper, we propose a novel framework for automatic selection of optimal parameters for pre-processing algorithm by estimating the quality of the document image. Recognition accuracy can be used as a metric for document quality assessment. We learn filters that capture the script properties and degradation to predict recognition accuracy. An EM based framework has been formulated to iteratively learn optimal parameters for document image pre-processing. In the E-step, we estimate the expected accuracy using the current set of parameters and filters. In the M-step we compute parameters to maximize the expected recognition accuracy found in E-step. The experiments validate the efficacy of the proposed methodology for document image pre-processing applications.","PeriodicalId":197359,"journal":{"name":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","volume":"87 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2016.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Performance of most of the recognition engines for document images is effected by quality of the image being processed and the selection of parameter values for the pre-processing algorithm. Usually the choice of such parameters is done empirically. In this paper, we propose a novel framework for automatic selection of optimal parameters for pre-processing algorithm by estimating the quality of the document image. Recognition accuracy can be used as a metric for document quality assessment. We learn filters that capture the script properties and degradation to predict recognition accuracy. An EM based framework has been formulated to iteratively learn optimal parameters for document image pre-processing. In the E-step, we estimate the expected accuracy using the current set of parameters and filters. In the M-step we compute parameters to maximize the expected recognition accuracy found in E-step. The experiments validate the efficacy of the proposed methodology for document image pre-processing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用图像质量评估的文档图像增强参数的自动选择
大多数文档图像识别引擎的性能受到待处理图像质量和预处理算法参数值选择的影响。通常,这些参数的选择是凭经验完成的。在本文中,我们提出了一种新的框架,通过估计文档图像的质量来自动选择预处理算法的最佳参数。识别精度可以作为文档质量评估的一个指标。我们学习捕捉脚本属性和退化的过滤器来预测识别的准确性。提出了一个基于EM的框架,迭代学习文档图像预处理的最优参数。在e步中,我们使用当前的参数集和过滤器来估计期望的精度。在m步中,我们计算参数以最大化e步中发现的期望识别精度。实验验证了该方法在文档图像预处理中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Handwritten and Machine-Printed Text Discrimination Using a Template Matching Approach General Pattern Run-Length Transform for Writer Identification Automatic Selection of Parameters for Document Image Enhancement Using Image Quality Assessment Large Scale Continuous Dating of Medieval Scribes Using a Combined Image and Language Model Performance of an Off-Line Signature Verification Method Based on Texture Features on a Large Indic-Script Signature Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1