Denoising technique for partial discharge signal : A comparison performance between artificial neural network, fast fourier transform and discrete wavelet transform

N. M. Yusoff, M. Isa, H. Hamid, M. Adzman, M. Rohani, C. Yii, N. N. Ayop
{"title":"Denoising technique for partial discharge signal : A comparison performance between artificial neural network, fast fourier transform and discrete wavelet transform","authors":"N. M. Yusoff, M. Isa, H. Hamid, M. Adzman, M. Rohani, C. Yii, N. N. Ayop","doi":"10.1109/PECON.2016.7951579","DOIUrl":null,"url":null,"abstract":"This paper presents de-noising of PD signal using three different techniques; ANN, FFT and DWT. The objective of this paper is to yield the PD signal from the disturb signal which is the combination of PD and noise signal. These signals are generated using EMTP-ATP simulation environment. This research used the straightforward procedure in the de-noising technique. The accuracy of the de-noising is based on the calculation of SNR. The result of this research shows ANN is the best de-noising technique as the calculated SNR is the highest with 0.635938, followed by FFT technique with SNR of 0.452903 and lowest SNR is DWT with −0.154054.","PeriodicalId":259969,"journal":{"name":"2016 IEEE International Conference on Power and Energy (PECon)","volume":"64 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Power and Energy (PECon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECON.2016.7951579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper presents de-noising of PD signal using three different techniques; ANN, FFT and DWT. The objective of this paper is to yield the PD signal from the disturb signal which is the combination of PD and noise signal. These signals are generated using EMTP-ATP simulation environment. This research used the straightforward procedure in the de-noising technique. The accuracy of the de-noising is based on the calculation of SNR. The result of this research shows ANN is the best de-noising technique as the calculated SNR is the highest with 0.635938, followed by FFT technique with SNR of 0.452903 and lowest SNR is DWT with −0.154054.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部放电信号去噪技术:人工神经网络、快速傅立叶变换和离散小波变换的性能比较
本文介绍了三种不同的PD信号降噪技术;人工神经网络,FFT和DWT。本文的目标是从干扰信号中得到PD信号,该干扰信号是PD信号和噪声信号的组合。这些信号是利用EMTP-ATP仿真环境产生的。本研究采用了简单的降噪方法。去噪的精度取决于信噪比的计算。研究结果表明,人工神经网络降噪效果最好,计算得到的信噪比最高,为0.635938;FFT降噪效果次之,信噪比为0.452903;DWT降噪效果最低,为- 0.154054。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A carrier-based PWM with synchronous switching technique for a vienna rectifier Denoising technique for partial discharge signal : A comparison performance between artificial neural network, fast fourier transform and discrete wavelet transform Simulation analysis of an improved cascaded multilevel inverter topology A review on basic principle of lightning location in multi-station system and the ability of single-station measurement Microgeneration of electrical energy using piezoelectric from car movement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1