Dongmin Yang, Jongmin Shin, Jeonggyu Kim, Cheeha Kim
{"title":"An Energy-Optimal Scheme for Neighbor Discovery in Opportunistic Networking","authors":"Dongmin Yang, Jongmin Shin, Jeonggyu Kim, Cheeha Kim","doi":"10.1109/CCNC.2009.4784754","DOIUrl":null,"url":null,"abstract":"In opportunistic networking, networks are sparse and nodes are moving around, so it is hard to predict when a node gets and how long it keeps in contact with another. For prompt neighbor discovery, a node is assumed to broadcast continuously probing messages to discover another in its vicinity. This kind of persistent probing consumes too much energy for battery-operated devices to afford. One way to save energy for neighbor discovery is simply to turn off radio during non-contact time. In this paper, as the first step toward the general solution, we simplify the problem consisting of one sender and one receiver moving around and present a novel neighbor discovery scheme with radio \"on\" and \"off\" which is optimal in a sense that it does not miss a contact with the minimum energy consumed.","PeriodicalId":181188,"journal":{"name":"2009 6th IEEE Consumer Communications and Networking Conference","volume":"15 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 6th IEEE Consumer Communications and Networking Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC.2009.4784754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In opportunistic networking, networks are sparse and nodes are moving around, so it is hard to predict when a node gets and how long it keeps in contact with another. For prompt neighbor discovery, a node is assumed to broadcast continuously probing messages to discover another in its vicinity. This kind of persistent probing consumes too much energy for battery-operated devices to afford. One way to save energy for neighbor discovery is simply to turn off radio during non-contact time. In this paper, as the first step toward the general solution, we simplify the problem consisting of one sender and one receiver moving around and present a novel neighbor discovery scheme with radio "on" and "off" which is optimal in a sense that it does not miss a contact with the minimum energy consumed.