PLSA-based image auto-annotation: constraining the latent space

Florent Monay, D. Gática-Pérez
{"title":"PLSA-based image auto-annotation: constraining the latent space","authors":"Florent Monay, D. Gática-Pérez","doi":"10.1145/1027527.1027608","DOIUrl":null,"url":null,"abstract":"We address the problem of unsupervised image auto-annotation with probabilistic latent space models. Unlike most previous works, which build latent space representations assuming equal relevance for the text and visual modalities, we propose a new way of modeling multi-modal co-occurrences, constraining the definition of the latent space to ensure its consistency in semantic terms (words), while retaining the ability to jointly model visual information. The concept is implemented by a linked pair of Probabilistic Latent Semantic Analysis (PLSA) models. On a 16000-image collection, we show with extensive experiments that our approach significantly outperforms previous joint models.","PeriodicalId":292207,"journal":{"name":"MULTIMEDIA '04","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"283","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1027527.1027608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 283

Abstract

We address the problem of unsupervised image auto-annotation with probabilistic latent space models. Unlike most previous works, which build latent space representations assuming equal relevance for the text and visual modalities, we propose a new way of modeling multi-modal co-occurrences, constraining the definition of the latent space to ensure its consistency in semantic terms (words), while retaining the ability to jointly model visual information. The concept is implemented by a linked pair of Probabilistic Latent Semantic Analysis (PLSA) models. On a 16000-image collection, we show with extensive experiments that our approach significantly outperforms previous joint models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于pca的图像自动标注:潜在空间约束
我们用概率潜在空间模型解决了无监督图像自动标注问题。与大多数先前的工作不同,这些工作构建了假定文本和视觉模态具有同等相关性的潜在空间表示,我们提出了一种建模多模态共现的新方法,约束潜在空间的定义以确保其在语义术语(词)上的一致性,同时保留了联合建模视觉信息的能力。该概念由一对关联的概率潜在语义分析(PLSA)模型实现。在16000张图像集合上,我们通过大量的实验表明,我们的方法明显优于以前的联合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Context for semantic metadata Collusion attack on a multi-key secure video proxy scheme PLSA-based image auto-annotation: constraining the latent space The relative effectiveness of concept-based versus content-based video retrieval LEMUR: robotic musical instruments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1