Application of data mining techniques in customer realationship management for an automobile company

Alicia Y. C. Tang, N. Azami, N. Osman
{"title":"Application of data mining techniques in customer realationship management for an automobile company","authors":"Alicia Y. C. Tang, N. Azami, N. Osman","doi":"10.1109/ICIMU.2011.6122754","DOIUrl":null,"url":null,"abstract":"This work analyzes well-known DM techniques in Weka workbench, and reports the simulation results of applying four selected DM techniques and classifiers in the open source workbench to the Customer Relationship Management (CRM) problem in an automobile enterprise. It is proposed that data mining techniques to be used in aiding the salesperson and management of the enterprise for effective decision making. This approach was applied to 500 preprocessed records out of 2000 raw data sets for the past 5 years. Simulation results show that the large volume of customer historical data can play a value-added role for enterprise development in a way that the mined data helps them to study customer behavior so that personalized services can be provided. This paper also discusses the evaluation results of the four classifiers used in mining the customer data.","PeriodicalId":102808,"journal":{"name":"ICIMU 2011 : Proceedings of the 5th international Conference on Information Technology & Multimedia","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICIMU 2011 : Proceedings of the 5th international Conference on Information Technology & Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2011.6122754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work analyzes well-known DM techniques in Weka workbench, and reports the simulation results of applying four selected DM techniques and classifiers in the open source workbench to the Customer Relationship Management (CRM) problem in an automobile enterprise. It is proposed that data mining techniques to be used in aiding the salesperson and management of the enterprise for effective decision making. This approach was applied to 500 preprocessed records out of 2000 raw data sets for the past 5 years. Simulation results show that the large volume of customer historical data can play a value-added role for enterprise development in a way that the mined data helps them to study customer behavior so that personalized services can be provided. This paper also discusses the evaluation results of the four classifiers used in mining the customer data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据挖掘技术在某汽车公司客户关系管理中的应用
本文分析了Weka工作平台中知名的数据挖掘技术,并报告了将开源工作平台中选择的四种数据挖掘技术和分类器应用于某汽车企业客户关系管理(CRM)问题的仿真结果。提出利用数据挖掘技术帮助企业的销售人员和管理层进行有效的决策。该方法应用于过去5年2000个原始数据集中的500条预处理记录。仿真结果表明,大量的客户历史数据可以为企业的发展发挥增值作用,挖掘出来的数据可以帮助企业研究客户的行为,从而提供个性化的服务。本文还讨论了四种分类器在客户数据挖掘中的评价结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EWA: An exemplar-based watermarking attack Application of data mining techniques in customer realationship management for an automobile company An Augmented Reality's framework for mobile PAPR analysis of coded-OFDM system and mitigating its effect with clipping, SLM and PTS Analysing tasks through the sonification application and user intrepretation construction models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1