Multilingual acoustic models for the recognition of non-native speech

V. Fischer, E. Janke, S. Kunzmann, T. Ross
{"title":"Multilingual acoustic models for the recognition of non-native speech","authors":"V. Fischer, E. Janke, S. Kunzmann, T. Ross","doi":"10.1109/ASRU.2001.1034654","DOIUrl":null,"url":null,"abstract":"We report on the use of multilingual hidden Markov models for the recognition of non-native speech. Based on the design of a common phoneme set that provides a phone compression rate of almost 80 percent compared to a conglomerate of language dependent phone sets, we create acoustic models that share training data from up to 5 languages. Results obtained on two different data bases of non-native English demonstrate the feasibility of the approach, showing improved recognition accuracy in case of sparse training material, and also for speakers whose native language is not in the training data.","PeriodicalId":118671,"journal":{"name":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","volume":"35 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2001.1034654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We report on the use of multilingual hidden Markov models for the recognition of non-native speech. Based on the design of a common phoneme set that provides a phone compression rate of almost 80 percent compared to a conglomerate of language dependent phone sets, we create acoustic models that share training data from up to 5 languages. Results obtained on two different data bases of non-native English demonstrate the feasibility of the approach, showing improved recognition accuracy in case of sparse training material, and also for speakers whose native language is not in the training data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非母语语音识别的多语言声学模型
我们报告了使用多语言隐马尔可夫模型来识别非母语语音。基于公共音素集的设计,与语言依赖的电话集相比,它提供了近80%的电话压缩率,我们创建了声学模型,共享多达5种语言的训练数据。在两个不同的非母语英语数据库上获得的结果证明了该方法的可行性,无论是在训练材料稀疏的情况下,还是在训练数据中没有母语的情况下,都显示出更高的识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Example-based query generation for spontaneous speech Multilingual acoustic models for the recognition of non-native speech A comparative study of model-based adaptation techniques for a compact speech recognizer Trend tying in the segmental-feature HMM Estimated rank pruning and Java-based speech recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1