SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES

Marwan Alkhweldi, N. Schmid
{"title":"SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES","authors":"Marwan Alkhweldi, N. Schmid","doi":"10.1109/GlobalSIP.2018.8646706","DOIUrl":null,"url":null,"abstract":"This paper analyzes the potential of the Spatial Fourier transform (SFT) for detection of a periodic astrophysical signal and for estimation of parameters of the signal. In place of de-dispersing filter bank data for each Dispersion Measure (DM) trial and then integrating over frequency channels to yield a one-dimensional signal, we apply SFT to filter bank data, then detect periodic astrophysical signals and analyze their parameters such as DM and rotational period. This approach allows searching for periodic astrophysical signals in real time. Its complexity is dominated by the complexity of the SFT. The results of our analysis show promise. Using simulated data we demonstrate that it takes about 3 minutes of observation time to detect a pulsar at an S/N value of 8σ. The SFT data also provide information about the rotation of pulsars and lower and upper bounds on their DM value.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"71 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes the potential of the Spatial Fourier transform (SFT) for detection of a periodic astrophysical signal and for estimation of parameters of the signal. In place of de-dispersing filter bank data for each Dispersion Measure (DM) trial and then integrating over frequency channels to yield a one-dimensional signal, we apply SFT to filter bank data, then detect periodic astrophysical signals and analyze their parameters such as DM and rotational period. This approach allows searching for periodic astrophysical signals in real time. Its complexity is dominated by the complexity of the SFT. The results of our analysis show promise. Using simulated data we demonstrate that it takes about 3 minutes of observation time to detect a pulsar at an S/N value of 8σ. The SFT data also provide information about the rotation of pulsars and lower and upper bounds on their DM value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间傅里叶变换用于周期性天体物理脉冲的探测和分析
本文分析了空间傅里叶变换(SFT)在周期性天体物理信号检测和信号参数估计方面的潜力。为了代替每次色散测量(DM)试验的去色散滤波组数据,然后在频率通道上进行积分以产生一维信号,我们应用SFT对组数据进行滤波,然后检测周期性天体物理信号并分析其参数,如DM和旋转周期。这种方法可以实时搜索周期性的天体物理信号。它的复杂性主要取决于SFT的复杂性。我们的分析结果显示出了希望。利用模拟数据表明,探测到信噪比为8σ的脉冲星大约需要3分钟的观测时间。SFT数据还提供了脉冲星的旋转和它们的DM值的上下边界的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1