Efficient Skeleton-Based Action Recognition via Joint-Mapping strategies

Min-Seok Kang, Dongoh Kang, Hansaem Kim
{"title":"Efficient Skeleton-Based Action Recognition via Joint-Mapping strategies","authors":"Min-Seok Kang, Dongoh Kang, Hansaem Kim","doi":"10.1109/WACV56688.2023.00340","DOIUrl":null,"url":null,"abstract":"Graph convolutional networks (GCNs) have brought remarkable progress in skeleton-based action recognition. However, high computational cost and large model size make models difficult to be applied in real-world embedded system. Specifically, GCN that is applied in automated surveillance system pre-require models such as pedestrian detection and human pose estimation. Therefore, each model should be computationally lightweight and whole process should be operated in real-time. In this paper, we propose two different joint-mapping modules to reduce the number of joint representations, alleviating a total computational cost and model size. Our models achieve better accuracy-latency trade-off compared to previous state-ofthe-arts on two datasets, namely NTU RGB+D and NTU RGB+D 120, demonstrating the suitability for practical applications. Furthermore, we measure the latency of the models by using TensorRT framework to compare the models from a practical perspective.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Graph convolutional networks (GCNs) have brought remarkable progress in skeleton-based action recognition. However, high computational cost and large model size make models difficult to be applied in real-world embedded system. Specifically, GCN that is applied in automated surveillance system pre-require models such as pedestrian detection and human pose estimation. Therefore, each model should be computationally lightweight and whole process should be operated in real-time. In this paper, we propose two different joint-mapping modules to reduce the number of joint representations, alleviating a total computational cost and model size. Our models achieve better accuracy-latency trade-off compared to previous state-ofthe-arts on two datasets, namely NTU RGB+D and NTU RGB+D 120, demonstrating the suitability for practical applications. Furthermore, we measure the latency of the models by using TensorRT framework to compare the models from a practical perspective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于关节映射策略的高效骨骼动作识别
图卷积网络(GCNs)在基于骨架的动作识别方面取得了显著进展。然而,由于计算成本高,模型尺寸大,使得模型难以在实际的嵌入式系统中应用。具体来说,用于自动监控系统的GCN需要行人检测和人体姿态估计等模型。因此,每个模型在计算上都应该是轻量级的,整个过程应该是实时运行的。在本文中,我们提出了两种不同的联合映射模块,以减少联合表示的数量,减轻总计算成本和模型大小。我们的模型在NTU RGB+D和NTU RGB+ d120两个数据集上实现了更好的准确性和延迟权衡,证明了实际应用的适用性。此外,我们通过使用TensorRT框架来测量模型的延迟,从实际的角度对模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aggregating Bilateral Attention for Few-Shot Instance Localization Burst Reflection Removal using Reflection Motion Aggregation Cues Complementary Cues from Audio Help Combat Noise in Weakly-Supervised Object Detection Efficient Skeleton-Based Action Recognition via Joint-Mapping strategies Few-shot Object Detection via Improved Classification Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1