Text Matching Model with Multi-granularity Term Alignment

Ning Yang, Yabin Shao, Zhen Li
{"title":"Text Matching Model with Multi-granularity Term Alignment","authors":"Ning Yang, Yabin Shao, Zhen Li","doi":"10.1109/icet55676.2022.9824416","DOIUrl":null,"url":null,"abstract":"Text matching is one of the fundamental research tasks in the field of natural language processing. It can be applied to a large number of NLP tasks, such as information retrieval, question, and answer systems and text repetition. In this paper, we propose a text-matching model with multi-granularity term alignment (MGTA). The model extracts word information at different granularities through convolutional neural networks and enhances the model effect by aligning the original location features at different word granularities, enabling the model to obtain multiple granularities of information during text matching. We conduct experiments on the Q&A dataset, the text-implication dataset, and the paraphrase recognition dataset, respectively, and compare them with current mainstream models in terms of accuracy, MAP and MRR evaluation metrics, and has fewer parameters, which greatly improves the inference speed.","PeriodicalId":166358,"journal":{"name":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","volume":"88 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icet55676.2022.9824416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text matching is one of the fundamental research tasks in the field of natural language processing. It can be applied to a large number of NLP tasks, such as information retrieval, question, and answer systems and text repetition. In this paper, we propose a text-matching model with multi-granularity term alignment (MGTA). The model extracts word information at different granularities through convolutional neural networks and enhances the model effect by aligning the original location features at different word granularities, enabling the model to obtain multiple granularities of information during text matching. We conduct experiments on the Q&A dataset, the text-implication dataset, and the paraphrase recognition dataset, respectively, and compare them with current mainstream models in terms of accuracy, MAP and MRR evaluation metrics, and has fewer parameters, which greatly improves the inference speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多粒度词对齐的文本匹配模型
文本匹配是自然语言处理领域的基础研究课题之一。它可以应用于大量的NLP任务,如信息检索、问答系统和文本重复。本文提出了一种具有多粒度术语对齐(MGTA)的文本匹配模型。该模型通过卷积神经网络提取不同粒度的词信息,并通过对不同词粒度的原始位置特征进行对齐来增强模型效果,使模型在文本匹配过程中能够获得多粒度的信息。我们分别在问答数据集、文本蕴涵数据集和释义识别数据集上进行了实验,并在准确率、MAP和MRR评价指标上与当前主流模型进行了比较,且参数较少,大大提高了推理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Tanks Combat Automatic Decision Using Multi-agent A2C Algorithm Electrical and Thermal Analyses of RF-Power GaN HEMT Devices and Layout Optimization Recognition of Catenary Mast Number in Rail Transit A Novel Dual-Polarized Millimeter Wave Filtering Antenna for 5G Applications Text Matching Model with Multi-granularity Term Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1